BAY 86-9766 shows potent single-agent antitumor activity and acts synergistically in combination with sorafenib in preclinical HCC models. These results support the ongoing clinical development of BAY 86-9766 and sorafenib in advanced HCC.
The purpose of this study was to investigate the antitumor activity of regorafenib and sorafenib in preclinical models of HCC and to assess their mechanism of action by associated changes in protein expression in a HCC-PDX mouse model. Both drugs were administered orally once daily at 10 mg/kg (regorafenib) or 30 mg/kg (sorafenib), which recapitulate the human exposure at the maximally tolerated dose in mice.In a H129 hepatoma model, survival times differed significantly between regorafenib versus vehicle (p=0.0269; median survival times 36 vs 27 days), but not between sorafenib versus vehicle (p=0.1961; 33 vs 28 days). Effects on tumor growth were assessed in 10 patient-derived HCC xenograft (HCC-PDX) models. Significant tumor growth inhibition was observed in 8/10 models with regorafenib and 7/10 with sorafenib; in four models, superior response was observed with regorafenib versus sorafenib which was deemed not to be due to lower sorafenib exposure. Bead-based multiplex western blot analysis was performed with total protein lysates from drug- and vehicle-treated HCC-PDX xenografts. Protein expression was substantially different in regorafenib- and sorafenib-treated samples compared with vehicle. The pattern of upregulated proteins was similar with both drugs and indicates an activated RAF/MEK/ERK pathway, but more proteins were downregulated with sorafenib versus regorafenib. Overall, both regorafenib and sorafenib were effective in mouse models of HCC, although several cases showed better regorafenib activity which may explain the observed efficacy of regorafenib in sorafenib-refractory patients.
Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 degrees C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.