Tuberculosis (TB) and type 2 diabetes mellitus (DM), a major TB risk factor, are both accompanied by marked alterations in metabolic processes. Dissecting the specific metabolic changes induced by disease through metabolomics has shown potential to improve our understanding of relevant pathophysiological mechanisms of disease, which could lead to improved treatment. Targeted tandem liquid chromatography–mass spectrometry (LC-MS/MS) was used to compare amine and acylcarnitine levels in plasma samples of patients with TB or TB-DM from Indonesia at time of diagnosis and during antibiotic treatment. Partial least squares discrimination analysis (PLS-DA) showed good separation of patient groups. Amine levels were strongly altered in both disease groups compared to healthy controls, including low concentrations of citrulline and ornithine. Several amino acid ratios discriminated TB from controls (phenylalanine/histidine; citrulline/arginine; kynurenine/tryptophan), possibly reflecting changes in indoleamine-pyrrole 2,3-dioxygenase (IDO) and nitric oxide synthase (NOS) activity. Choline, glycine, serine, threonine and homoserine levels were lower in TB-DM compared to TB, and, in contrast to other analytes, did not normalize to healthy control levels during antibiotic treatment. Our results not only provide important validation of previous studies but also identify novel biomarkers, and significantly enhance our understanding of metabolic changes in human TB and TB-DM.
Significance
Lipid droplets (LDs) are ubiquitous organelles that play important roles in cellular energy homeostasis, tightly regulating the accumulation and release of lipids. In macrophages, lipids accumulate in LDs during inflammation. However, it is unclear how inflammatory activation promotes the accumulation of lipids in LDs, and how the dynamic between lipid accumulation and breakdown could drive or inhibit inflammation. Elucidating the role of lipid accumulation during inflammation may provide important knowledge to influence inflammatory processes during health and disease. We identify the importance of the hypoxia-inducible lipid droplet–associated protein and the intracellular adipose triglyceride lipase in the regulation of lipid accumulation and breakdown in inflammatory macrophages. Furthermore, we determine the regulatory effect of lipid breakdown from LDs in supporting inflammation.
BackgroundType 2 diabetes mellitus (DM) is a major risk factor for development of tuberculosis (TB), however the underlying molecular foundations are unclear. Since lipids play a central role in the development of both DM and TB, lipid metabolism may be important for TB-DM pathophysiology.MethodsA 1H NMR spectroscopy-based platform was used to determine 225 lipid and other metabolic intermediates in plasma samples of healthy controls (n = 50) and patients with TB (n = 50), DM (n = 50) or TB-DM (n = 27).ResultsTB patients presented with wasting disease, represented by decreased amino acid levels including histidine and alanine. Conversely, DM patients were dyslipidemic as evidenced by high levels of very low-density lipoprotein triglycerides and low high-density lipoprotein cholesterol. TB-DM patients displayed metabolic characteristics of both wasting and dyslipidemia combined with disease interaction-specific increases in phospholipid metabolites (e.g. sphingomyelins) and atherogenic remnant-like lipoprotein particles. Biomarker analysis identified the ratios of phenylalanine/histidine and esterified cholesterol/sphingomyelin as markers for TB classification regardless of DM-status.ConclusionsTB-DM patients possess a distinctive plasma lipid profile with pro-atherogenic properties. These findings support further research on the benefits of improved blood lipid control in the treatment of TB-DM.
Type 2 diabetes mellitus is an established risk factor for tuberculosis but the underlying mechanisms are largely unknown. We examined the effects of hyperglycaemia, a hallmark of diabetes, on the cytokine response to and macrophage infection with Mycobacterium tuberculosis. Increasing in vitro glucose concentrations from 5 to 25 mmol/L had marginal effects on cytokine production following stimulation of peripheral blood mononuclear cells (PBMCs) with M. tuberculosis lysate, LPS or Candida albicans, while 40 mmol/L glucose increased production of TNF-α, IL-1β, IL-6 and IL-10, but not of IFN-γ, IL-17A and IL-22. Macrophage differentiation under hyperglycaemic conditions of 25 mmol/L glucose was also associated with increased cytokine production upon stimulation with M. tuberculosis lysate and LPS but in infection experiments no differences in M. tuberculosis killing or outgrowth was observed. The phagocytic capacity of these hyperglycaemic macrophages also remained unaltered. The fact that only very high glucose concentrations were able to significantly influence cytokine production by macrophages suggests that hyperglycaemia alone cannot fully explain the increased susceptibility of diabetes mellitus patients to tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.