Phospholipid bilayers have been intensively studied by molecular dynamics (MD) simulation in recent years. The properties of bilayer edges are important in determining the structure and stability of pores formed in vesicles and biomembranes. In this work, we use molecular dynamics simulation to investigate the structure, dynamics, and line tension of the edges of bilayer ribbons composed of pure dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoylphosphatidylethanolamine (POPE). As expected, we observe a significant reorganization of lipids at and near the edges. The treatment of electrostatic effects is shown to have a qualitative impact on the structure and stability of the edge, and significant differences are observed in the dynamics and structure of edges formed by DMPC and palmitoyl-oleoylphosphatidylethanolamine. From the pressure anisotropy in the simulation box, we calculate a line tension of approximately 10-30 pN for the DMPC edge, in qualitative agreement with experimental estimates for similar lipids.
Bilayer disks and ribbons composed of a mixture of short- and long-tail phospholipids have been studied by molecular dynamics with a coarse-grained model. The effects of system composition on the edge structure, composition, and line tension were analyzed. Increases in the fraction of short-tail lipids tend to decrease the line tension (i.e., stabilize the edge) but not eliminate it. The short-tail lipid is generally enriched at the curved rim forming the bilayer edge, with an excess of 3 to 4 molecules per nanometer (relative to the bulk), but complete segregation was not observed. In all mixtures, a region depleted in the short-tail component occurs just before the edge, corresponding to a bulge in the bilayer thickness. The bulge and depletion are more prominent as the bilayer composition shifts toward a majority of short-tail lipids. In one case, a net excess of long-tail lipids at the edge was demonstrated, suggesting that certain circumstances give rise to a "segregation inversion" in which the long-tail lipid behaves as an edge stabilizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.