Site safety is one critical factor affecting the sustainability of skyscrapers and decoration, repair, and maintenance projects. Many newly-built skyscrapers exceed 50 storeys in Hong Kong and decoration, repair, and maintenance projects are widely performed to extend the lifespans of buildings. Although many cities do not contain skyscrapers at present, this will change in the future. Likewise, more decoration, repair, and maintenance projects will emerge. Thus, the present research, which compares the safety risks among the new and DSR projects, provides insights for builders, policymakers, and safety personnel. Moreover, research studies which rank and compare decoration, repair, and maintenance projects and new skyscraper constructions are scarce. The use of the evidence-based practice approach, which aims to narrow the gap between practice and academia in construction safety research, is the first of its kind. In this paper, we firstly provide a systematic literature review from 1999 to 2019 regarding construction safety, and then study the industry’s perspectives by analysing the construction practitioners’ interview results, court cases, and analytic hierarchy process survey results to compare them with the literature. It is found that the generation gap and prolonged working hours lead to accidents—a phenomenon which is unique in Hong Kong and absent from the literature. It also reveals that most accidents happen on new building sites due to tower crane failure, while those on DSR projects are linked with the circular saw. Although many of the contractors involved in new buildings are wealthier than DSR contractors, it is surprising to learn that lack of funding for safety is the most important factor linked to safety risks on the sites.
In this study, the root sources contributing to the urban heat island (UHI) effect between megacities, such as Hong Kong and Shenzhen, were integrated and compared using satellite remote sensing data. Classification and multilayer perceptron regression tree (CARTMLP) algorithms were used to classify land use. The radiative transfer equation method was applied to retrieve the land surface temperatures (LSTs) in the study area. Multiple linear regression analysis was applied to determine the relationship between land-use types and UHIs. The experimental results show a large area of relatively high temperature dispersed within Shenzhen, and comparatively small areas highly centralized in Hong Kong, with the retrieved LST in Hong Kong lower than that in Shenzhen. In addition, the surface temperature of large complex buildings decorated with high-albedo materials in Hong Kong was higher than in Shenzhen (e.g., Hong Kong International Airport, 25.12 °C; Shenzhen Bao’an International Airport, 23.38 °C), with artificial heat being an important contributor to these differences. These results also imply that high-albedo materials are sufficient to alleviate high temperatures. These findings are integrated to propose an organic combination strategy for reducing UHI effects in urban areas in megacities worldwide, such as Hong Kong and Shenzhen in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.