FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.
Gene therapy was originally conceived as a medical intervention to replace or correct defective genes in patients with inherited disorders. However, it may have much broader potential as an alternative delivery platform for protein therapeutics, such as cytokines, hormones, antibodies and novel engineered proteins. One key technical barrier to the widespread implementation of this form of therapy is the need for precise control over the level of protein production. A suitable system for pharmacologic control of therapeutic gene expression would permit precise titration of gene product dosage, intermittent or pulsatile treatment, and ready termination of therapy by withdrawal of the activating drug. We set out to design such a system with the following properties: (1) low baseline expression and high induction ratio; (2) positive control by an orally bioavailable small-molecule drug; (3) reduced potential for immune recognition through the exclusive use of human proteins; and (4) modularity to allow the independent optimization of each component using the tools of protein engineering. We report here the properties of this system and demonstrate its use to control circulating levels of human growth hormone in mice implanted with engineered human cells.
The pharmacokinetic and pharmacodynamic effects of inhaled corticosteroids (ICS) have shaped the efficacy and safety of these agents in the treatment of asthma.Important pharmacokinetic and pharmacodynamic characteristics that can enhance the efficacy of ICS include small particle size, high glucocorticoid-receptor-binding affinity, long pulmonary residence time and lipid conjugation. These characteristics can increase or prolong the antiinflammatory effects of an ICS. Important pharmacokinetic characteristics that can enhance the safety of ICS include on-site activation in the lung, low oropharyngeal exposure, negligible oral bioavailability, high protein-binding and rapid systemic clearance.The degree of oropharyngeal exposure is relevant to local side-effects, such as oropharyngeal candidiasis, dysphonia and coughing. Pharmacokinetic properties that influence the degree of systemic exposure are relevant to the pharmacodynamic effect of ICS-induced hypothalamicpituitary-adrenal axis suppression and cortisol suppression, an indicator of potential long-term systemic side-effects, such as reduced growth velocity and bone density, fractures, and skin bruising and thinning.Therefore, significant differences in the pharmacokinetic and pharmacodynamic characteristics of the currently available inhaled corticosteroids warrant careful consideration when used in clinical practice as they may result in differences in efficacy and local and systemic safety profiles.
Stable delivery of a therapeutic protein under pharmacologic control was achieved through in vivo somatic gene transfer. This system was based on the expression of two chimeric, human-derived proteins that were reconstituted by rapamycin into a transcription factor complex. A mixture of two adeno-associated virus vectors, one expressing the transcription factor chimeras and one containing erythropoietin (Epo) under the control of a promoter responsive to the transcription factor, was injected into skeletal muscle of immune-competent mice. Administration of rapamycin resulted in 200-fold induction of plasma Epo. Stable engraftment of this humanized system in immune-competent mice was achieved for 6 months with similar results for at least 3 months in a rhesus monkey.
Targeted disruption of the pp60 src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3,4-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 ؍ 0.30 M for AP22408 and 5.5 M for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.