Catalase is a tetrameric hemoprotein which degrades H2O2. Recombinant phage clones containing the human catalase gene have been isolated and characterized. The gene is 34 kb long and is split into 13 exons. The precise size and location of the exons has been determined. In addition, essentially full length catalase cDNA clones have been isolated and sequenced and used to tentatively identify the 5'-end of the gene. This assignment, if correct, predicts that the region upstream of the gene does not contain a TATA box. This region is GC rich (67%) and contains several CCAAT and GGGCGG sequences which may form part of the promoter. Translation of the catalase mRNA appears to begin immediately upstream of the amino-terminal Ala residue of catalase.
We have reinvestigated a young woman, originally reported by us in 1983, who presented with exercise intolerance and lactic acidosis associated with severe deficiency of complex III and who responded to therapy with menadione and ascorbate. Gradually, she developed symptoms of a mitochondrial encephalomyopathy. Immunocytochemistry of serial sections of muscle showed a mosaic of fibers that reacted poorly with antibodies to subunits of complex III but reacted normally with antibodies to subunits of complexes I, II, or IV, suggesting a mutation of mtDNA. These findings demonstrate the diagnostic value of immunocytochemistry in identifying specific respiratory-chain deficiencies and, potentially, distinguishing between nuclear- or mtDNA-encoded defects. Sequence analysis revealed a stop-codon mutation (G15242A) in the mtDNA-encoded cytochrome b gene, resulting in loss of the last 215 amino acids of cytochrome b. PCR-RFLP analysis indicated that the G15242A mutation was heteroplasmic and was present in a high percentage (87%) of affected tissue (skeletal muscle) and a low percentage (0.7%) of unaffected tissue (blood) but was not detected in controls. Analysis of microdissected muscle fibers showed a significant correlation between the immunoreactivity toward the Rieske protein of complex III and the percentage of mutant mtDNA: immunopositive fibers had a median value of 33% of the G15242A mutation, whereas immunonegative, ragged-red fibers had a median value of 89%, indicating that the stop-codon mutation was pathogenic in this patient. The G15242A mutation was also present in several other tissues, including hair roots, indicating that it must have arisen either very early in embryogenesis, before separation of the primary germ layers, or in the maternal germ line. The findings in this patient are contrasted with other recently described patients who have mutations in the cytochrome b gene.
Purpose: Fragile X syndrome is caused by expansion and subsequent methylation of a CGG trinucleotide repeat in the FMR1 5Ј-untranslated region. Southern blot analysis is typically required to determine expansion size for triplet repeat lengths Ͼ200. We describe a triplet-primed polymerase chain reaction-based method using automated capillary electrophoresis detection for qualitative assessment of expanded CGG repeats. Methods: The assay uses triplet-primed polymerase chain reaction in combination with GC-melting reagents and substitution of 7-deaza-2-deoxyGTP for dGTP. Amplicons are resolved by capillary electrophoresis. Results: A distinctive pattern of tapering or "stutter" polymerase chain reaction amplification was evident on capillary electrophoresis in male and female patients harboring all expanded allele lengths examined (up to 2000 CGG repeats) and could be used to differentiate normal, intermediate, premutation, and full mutation alleles. Full mutation alleles exhibited an additional late-migrating amplicon on capillary electrophoresis. Mixing experiments demonstrated sensitivity as low as 1% for detection of the full mutation allele. In a 1275-sample concordance study against our existing polymerase chain reaction platform (with Southern blot analysis for repeat lengths Ն55), the triplet-primed polymerase chain reaction method exhibited 100% concordance for normal, intermediate, expanded, and full mutation alleles. This method also detected the full mutation alleles in DNA isolated from blood spots. Conclusion: This assay provides an accurate assessment of FMR1 repeat status and holds promise for use in carrier and newborn screening. The method distinguishes normal homozygous females from full mutation carrying females. Although the method is not useful for accurate sizing, it supplements the classic polymerase chain reaction method and results in significant reduction in the number of Southern blot analyses required to be performed in the laboratory to accurately assess the FMR1 genotype in all individuals. Genet Med 2010:12(3):162-173.
Purpose:We sought to determine the genotype frequencies for cytochrome p450 enzyme 2C19 variant alleles both in the US panethnic population and various US ethnic groups and to establish the frequency of clinically actionable genotypes. methods:Analytical results were obtained from 1,396 consecutive samples submitted for cytochrome p450 enzyme 2C19 genotyping tests and stored in a proprietary database. This database was queried and genotypes and predicted phenotypes established. Anonymized samples were obtained from specimens submitted for cystic fibrosis genotyping that contained ethnicity information. Samples from 357, 149, and 346 individuals self-identified as white, African American, and Hispanic, respectively, were analyzed. In addition, 342 anonymized samples submitted for Ashkenazi Jewish panel testing were analyzed.Results: Significant ethnic differences were observed in the frequencies of the *17 ultrarapid allele among the various groups studied. In the pan-ethnic population, 3.8% of tested patients were classified as ultrarapid metabolizers, 24% as extensive metabolizers heterozygous for a *17 ultrarapid allele, 27% as intermediate metabolizers, and 3.5% as poor metabolizers. Using stringent criteria, 7.3% of individuals would have clinically actionable genotypes. In addition, we detected two individuals with a haplotype of *2/*17 and a single individual with a haplotype of *4/*17 indicating that the *17 hypermetabolic allele can occur on a *1, *2, or *4 background.Genet Med 2012:14(1):95-100
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.