As AI applications are deployed in more and more real-world settings, it is becoming increasingly important to verify their safety and security. While declarative languages (of the kind found in automated planners and model checkers) are traditionally used for verifying AI systems, a big challenge is to design methods that generate verified executable programs. A good example of such a "verification to implementation" cycle is given by automated planning languages like PDDL, where plans are found via a model search in a declarative language, but then interpreted or compiled into executable code in an imperative language. In this paper, we show that this method can itself be verified. We present a formal framework and a prototype Agda implementation that represent PDDL plans as executable functions that inhabit types that are given by formulae describing planning problems. By exploiting the well-known Curry-Howard correspondence, type-checking then automatically ensures that the generated program corresponds precisely to the specification of the planning problem.
Abstract. Horn clauses and first-order resolution are commonly used to implement type classes in Haskell. Several corecursive extensions to type class resolution have recently been proposed, with the goal of allowing (co)recursive dictionary construction where resolution does not terminate. This paper shows, for the first time, that corecursive type class resolution and its extensions are coinductively sound with respect to the greatest Herbrand models of logic programs and that they are inductively unsound with respect to the least Herbrand models. We establish incompleteness results for various fragments of the proof system.
Concurrent separation logic is distinguished by transfer of state ownership upon parallel composition and framing. The algebraic structure that underpins ownership transfer is that of partial commutative monoids (PCMs). Extant research considers ownership transfer primarily from the logical perspective while comparatively less attention is drawn to the algebraic considerations. This paper provides an algebraic formalization of ownership transfer in concurrent separation logic by means of structure-preserving partial functions (i.e., morphisms) between PCMs, and an associated notion of separating relations. Morphisms of structures are a standard concept in algebra and category theory, but haven't seen ubiquitous use in separation logic before. Separating relations. are binary relations that generalize disjointness and characterize the inputs on which morphisms preserve structure. The two abstractions facilitate verification by enabling concise ways of writing specs, by providing abstract views of threads' states that are preserved under ownership transfer, and by enabling user-level construction of new PCMs out of existing ones.
No abstract
First-order resolution has been used for type inference for many years, including in Hindley-Milner type inference, type-classes, and constrained data types. Dependent types are a new trend in functional languages. In this paper, we show that proof-relevant first-order resolution can play an important role in automating type inference and term synthesis for dependently typed languages. We propose a calculus that translates type inference and term synthesis problems in a dependently typed language to a logic program and a goal in the proof-relevant first-order Horn clause logic. The computed answer substitution and proof term then provide a solution to the given type inference and term synthesis problem. We prove the decidability and soundness of our method. The paper is under consideration for acceptance in TPLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.