HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fullerene graphs are cubic, 3-connected, planar graphs with exactly 12 pentagonal faces, while all other faces are hexagons. Fullerene graphs are mathematical models of fullerene molecules, i.e., molecules comprised only by carbon atoms different than graphites and diamonds. We give a survey on fullerene graphs from our perspective, which could be also considered as an introduction to this topic. Different types of fullerene graphs are considered, their symmetries, and construction methods. We give an overview of some graph invariants that can possibly correlate with the fullerene molecule stability, such as: the bipartite edge frustration, the independence number, the saturation number, the number of perfect matchings, etc.
We show that every cubic bridgeless graph G has at least 2^(|V(G)|/3656)
perfect matchings. This confirms an old conjecture of Lovasz and Plummer.
This version of the paper uses a different definition of a burl from the
journal version of the paper and a different proof of Lemma 18 is given. This
simplifies the exposition of our arguments throughout the whole paper
A fullerene graph is a planar cubic 3-connected graph with only pentagonal
and hexagonal faces. We show that fullerene graphs have exponentially many
perfect matchings.Comment: 7 pages, 3 figure
We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts in G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at most 1.127752. The lower bound on the size of maximum edge-cut also applies to random cubic graphs. Specifically, a random n-vertex cubic graph a.a.s. contains an edge cut of size 1.33008n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.