Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall characteristics of the mixture. Deformation properties are used as inputs for empirical mixture design, and fatigue performance of asphalt mixtures reflects the parameters of functional tests. Master curves convey properties of asphalt mixtures for various conditions and allow us to evaluate them without the need of time expensive testing.
The deformational properties and fatigue of asphalt layers are important for the design and assessment of semi-rigid and flexible pavements. The Two-point Bending Test was used for determination of deformational characteristics of asphalt mixtures on Department of Construction Management in Zilina. The results are evaluated with the KATEMS assessment software. The long-term research lead to estimation of deformational characteristics and fatigue of different types of asphalt mixtures. The tests have shown a positive impact of additives (ground rubber, hydrate lime component) on the results of these mixtures. This article is focused on assessment of deformational properties and fatigue of selected types of asphalt mixtures.
The bitumen binders in road pavements are exposed traffic loading effect at different climatic conditions. A resistance to these stresses depends on bitumen properties as well. The paper presents rheological properties (G*, δ, ν*) determined and compared for four bituminous binders (unmodified and polymer modified bitumen) at temperature 46 – 60 (80) °C and dynamic viscosity at temperature 130 – 190 °C (Brookfield viscometer). On the basis of viscosity results it is possible to set optimal production and compaction temperatures. Elastic and viscous behavior of binder in the middle temperature is determined in rheometers. The higher value of complex modulus, the stiffer bitumen binder is able to resist deformation. The greater content of elastic components (e.g. polymer in bitumen) varies mainly elastic-viscous properties of primary bitumen.
Safe operation of road tunnels is very important, therefore we make risk analysis already in project developing. In Slovak Republic, the risk analysis is carried out according to technical conditions [1]. It allows make assessment of safety of road tunnels and calculate the specific level of risk, which reflects possible (statistically expected) number of deaths for a specific period. Than we know to compare tunnels with the reference tunnel and also we classify individual tunnels into hazard classes, which provides an overview about absolute risk level of tunnels.
Design of asphalt concrete, required properties of constituent materials and their mixing ratios, is of tremendous significance and should be implemented with consideration given to the whole life cycle of those materials and the final construction. Conformity with requirements for long term performance of embedded materials is the general objective of the Life Cycle Assessment (LCA). Therefore, within the assessment, material properties need to be evaluated with consideration given to the whole service life—from the point of embedding in the construction until their disposal or recycling. The evaluation focuses on verification of conformity with criteria set for these materials and should guarantee serviceability and performance during their whole service life. Recycling and reuse of asphalt concrete should be preferred over disposal of the material. This paper presents methodology for LCA of asphalt concrete. It was created to ensure not only applicability of the materials in the initial stage, at the point of their embedding, but their suitability in terms of normatively prescribed service performance of the final construction. Methods described and results are presented in a case study for asphalt mixture AC 11; I design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.