The receptors for vasoactive intestinal peptide (VIP), VPAC1-, VPAC2-, and PAC1-receptor are overexpressed by various tumor cells. VIP can target these receptors and transport conjugates into the cell. However, the use of VIP for tumor cell targeting is hampered by the peptides short half-lives due to enzymatic degradation. Because protamine-based nanoparticles (proticles) protect the peptide and serve as peptide depot, we explored the potential of proticles as carrier for VIP-conjugated molecules. The VIP-loaded proticles were stable as shown by Fluorescence Correlation Spectroscopy. With Confocal Laser Scanning Microscopy, we observed VIP-loaded proticles to specifically target the tumor cells. The cell binding triggered the substance release and conjugate internalization of VIP-Cy3 in vitro and ex vivo by human tumors. We observed VIP releasing proticle depots distributed in rat tissue and human tumors. Our findings warrant further studies to explore the proticles potential to enable peptide-mediated targeting for in vivo and clinical applications.
Pregnant rats received 0.10 or 0.20 mg/kg body weight betamethasone, or 100 mg/kg body weight L-carnitine, or L-carnitine 100 mg/kg plus betamethasone 0.05 or 0.10 mg/kg body weight, or saline (controls) for three days before delivery of foetuses at day 19 of gestation. Dose-related effects on the dipalmitoyl phosphatidylcholine content and the phosphatidylcholine species composition of foetal and maternal lungs were determined. Betamethasone (0.10 and 0.20 mg/kg) or L-carnitine (100 mg/kg) significantly increased (p < 0.05) the dipalmitoyl phosphatidylcholine content in the foetal lungs, while only small changes were found in relative terms. Combinations of betamethasone (0.05 or 0.10 mg/kg) with L-carnitine (100 mg/kg) also significantly increased the dipalmitoyl phosphatidylcholine content of the foetal lungs above control values (p < 0.01) and above the values achieved with betamethasone alone (p < 0.05). In the maternal lungs a significant increase of the dipalmitoyl phosphatidylcholine content above the control values was only found after treatment with betamethasone-carnitine combinations, whereas compared with the foetal lung the relative increase of dipalmitoyl phosphatidylcholine as a fraction of total phosphatidylcholine was more pronounced after betamethasone treatment. The gas Chromatographie method used separates two monoenoic phosphatidylcholine species with 32 carbon atoms in the acyl residues. These two phosphatidylcholine species showed striking differences between adult and foetal lungs. Palmitoleyl palmitoyl phosphatidylcholine predominates in the maternal lung, whereas palmitoyl palmitoleyl phosphatidylcholine is the major monoenoic phosphatidylcholine species with 32 carbon atoms in the foetal lung. These two species were not affected in maternal or foetal lung by betamethasone or L-carnitine treatment. In contrast, after treatment with betamethasone-carnitine combinations, a significant increase of the fraction of palmitoyl palmitoleyl phosphatidylcholine was found in foetal but not in the maternal lung. The results of the present study demonstrate that maternal glucocorticoid and carnitine treatment affects the maternal as well as the foetal lung but with different effects on the dipalmitoyl phosphatidylcholine content and phosphatidylcholine species composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.