Bangladesh is one of the most flood-affected countries in the world. In the last few decades, flood frequency, intensity, duration, and devastation have increased in Bangladesh. Identifying flood-damaged areas is highly essential for an effective flood response. This study aimed at developing an operational methodology for rapid flood inundation and potential flood damaged area mapping to support a quick and effective event response. Sentinel-1 images from March, April, June, and August 2017 were used to generate inundation extents of the corresponding months. The 2017 pre-flood land cover maps were prepared using Landsat-8 images to identify major land cover on the ground before flooding. The overall accuracy of flood inundation mapping was 96.44% and the accuracy of the land cover map was 87.51%. The total flood inundated area corresponded to 2.01%, 4.53%, and 7.01% for the months April, June, and August 2017, respectively. Based on the Landsat-8 derived land cover information, the study determined that cropland damaged by floods was 1.51% in April, 3.46% in June, 5.30% in August, located mostly in the Sylhet and Rangpur divisions. Finally, flood inundation maps were distributed to the broader user community to aid in hazard response. The data and methodology of the study can be replicated for every year to map flooding in Bangladesh.
Volcanoes are hazardous to local and global populations, but only a fraction are continuously monitored by ground-based sensors. For example, in Latin America, more than 60% of Holocene volcanoes are unmonitored, meaning long-term multiparameter data sets of volcanic activity are rare and sparse. We use satellite observations of degassing, thermal anomalies, and surface deformation spanning 17 years at 47 of the most active volcanoes in Latin America and compare these data sets to ground-based observations archived by the Global Volcanism Program. This first comparison of multisatellite time series on a regional scale provides information regarding volcanic behavior during, noneruptive, pre-eruptive, syneruptive, and posteruptive periods. For example, at Copahue volcano, deviations from background activity in all three types of satellite measurements were manifested months to years in advance of renewed eruptive activity in 2012. By quantifying the amount of degassing, thermal output, and deformation measured at each of these volcanoes, we test the classification of these volcanoes as open or closed volcanic systems. We find that~28% of the volcanoes do not fall into either classification, and the rest show elements of both, demonstrating a dynamic range of behavior that can change over time. Finally, we recommend how volcano monitoring could be improved through better coordination of available satellite-based capabilities and new instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.