Abstract. Forest fire is one of the key drivers of forest degradation in Nepal. Most of the forest fires are human-induced and occur during the dry season, with ,89% occurring in March, April and May. The inaccessible mountainous terrain and narrow time window of occurrence complicate suppression efforts. In this paper, forest fire patterns are analysed based on historical fire incidence data to explore the spatial and temporal patterns of forest fires in Nepal. Three main factors are involved in the ignition and spread of forest fires, namely fuel availability, temperature and ignition potential. Using these factors a spatially distributed fire risk index was calculated for Nepal based on a linear model using weights and ratings. The input parameters for the risk assessment model were generated using remote sensing based land cover, temperature and active fire data, and topographic data. A relative risk ranking was also calculated for districts and village development committees (VDCs). In total, 18 out of 75 districts were found with high risk of forest fires. The district and VDC level fire risk ranking could be utilised by the Department of Forest for prioritisation, preparedness and resource allocation for fire control and mitigation.Additional keywords: fire behaviour, fire danger, fire management, fire risk.
Bangladesh is one of the most flood-affected countries in the world. In the last few decades, flood frequency, intensity, duration, and devastation have increased in Bangladesh. Identifying flood-damaged areas is highly essential for an effective flood response. This study aimed at developing an operational methodology for rapid flood inundation and potential flood damaged area mapping to support a quick and effective event response. Sentinel-1 images from March, April, June, and August 2017 were used to generate inundation extents of the corresponding months. The 2017 pre-flood land cover maps were prepared using Landsat-8 images to identify major land cover on the ground before flooding. The overall accuracy of flood inundation mapping was 96.44% and the accuracy of the land cover map was 87.51%. The total flood inundated area corresponded to 2.01%, 4.53%, and 7.01% for the months April, June, and August 2017, respectively. Based on the Landsat-8 derived land cover information, the study determined that cropland damaged by floods was 1.51% in April, 3.46% in June, 5.30% in August, located mostly in the Sylhet and Rangpur divisions. Finally, flood inundation maps were distributed to the broader user community to aid in hazard response. The data and methodology of the study can be replicated for every year to map flooding in Bangladesh.
Land cover change is a critical driver for enhancing the soil erosion risk in Nepal. Loss of the topsoil has a direct and indirect effect on human life and livelihoods. The present study provides an assessment of the decadal land use and land cover (LULC) change and consequent changes in the distribution of soil erosion risk for the years, 1990, 2000, and 2010, for the entire country of Nepal. The study attempted to understand how different land cover types change over the three decades and how it has changed the distribution of soil erosion risks in Nepal that would help in the development of soil conservation priority. The land cover maps were produced using geographic object-based image analysis (GEOBIA) using Landsat images. Soil erosion patterns were assessed using the revised universal soil loss equation (RUSLE) with the land cover as the input. The study shows that the forest cover is the most dominant land cover in Nepal that comprises about 6,200,000 ha forest cover. The estimated annual erosion was 129.30 million tons in 1990 and 110.53 million tons in 2010. The assessment of soil erosion dynamics was presented at the national, provincial, and district level. District wise analysis revealed that Gulmi, Parbat, Syangja, and the Tanahu district require priority for soil conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.