Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVATtype parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is Correspondence to: E. Nemitz (en@ceh.ac.uk) larger, with standard deviations of averages of 18%. The dataset averaged over the different instruments fails to close the energy budget by 20%, significantly larger than the uncertainties in the individual flux corrections. However, if the largest individual turbulent flux estimates are considered, energy closure can be achieved, indicating that the closure gap is within the spread of the measurements. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.
Abstract. A major international experiment on ammonia (NH3) biosphere-atmosphere exchange was conducted over intensively managed grassland at Braunschweig, Germany. The experimental strategy was developed to allow an integrated analysis of different features of NH3 exchange including: a) quantification of nearby emissions and advection effects, b) estimation of net NH3 fluxes with the canopy by a range of micrometeorological measurements, c) analysis of the sources and sinks of NH3 within the plant canopy, including soils and bioassay measurements, d) comparison of the effects of grassland management options on NH3 fluxes and e) assessment of the interactions of NH3 fluxes with aerosol exchange processes. Additional technical objectives included the inter-comparison of different estimates of sensible and latent heat fluxes, as well as continuous-gradient and Relaxed Eddy Accumulation (REA) systems for NH3 fluxes. The prior analysis established the spatial and temporal design of the experiment, allowing significant synergy between these objectives. The measurements were made at 7 measurement locations, thereby quantifying horizontal and vertical profiles, and covered three phases: a) tall grass canopy prior to cutting (7 days), b) short grass after cutting (7 days) and c) re-growing sward following fertilization with ammonium nitrate (10 days). The sequential management treatments allowed comparison of sources-sinks, advection and aerosol interactions under a wide range of NH3 fluxes. This paper describes the experimental strategy and reports the grassland management history, soils, environmental conditions and air chemistry during the experiment, finally summarizing how the results are coordinated in the accompanying series of papers.
Abstract.A major international experiment on ammonia (NH 3 ) biosphere-atmosphere exchange was conducted over intensively managed grassland at Braunschweig, Germany. The experimental strategy was developed to allow an integrated analysis of different features of NH 3 exchange including: a) quantification of nearby emissions and advection ef- The prior analysis established the spatial and temporal design of the experiment, allowing significant synergy between these objectives. The measurements were made at 7 measurement locations, thereby quantifying horizontal and vertical profiles, and covered three phases: a) tall grass canopy prior to cutting (7 days), b) short grass after cutting (7 days) and c) re-growing sward following fertilization with ammonium nitrate (10 days). The sequential management treatments allowed comparison of sources-sinks, advection and aerosol interactions under a wide range of NH 3 fluxes.Published by Copernicus Publications on behalf of the European Geosciences Union. This paper describes the experimental strategy and reports the grassland management history, soils, environmental conditions and air chemistry during the experiment, finally summarizing how the results are coordinated in the accompanying series of papers.
Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVAT-type parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is larger, with standard deviations of averages of 18%. While the dataset averaged over the different instruments fails to close the energy budget by 30%, if the largest turbulent fluxes are considered, near perfect energy closure can be achieved, suggesting that most techniques underestimate λE in particular. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.