Nacre, the crown jewel of natural materials, has been extensively studied owing to its remarkable physical properties for over 160 years. Yet, the precise structural features governing its extraordinary strength and its growth mechanism remain elusive. In this paper, we present a series of observations pertaining to the red abalone (Haliotis rufescens) shell's organic-inorganic interface, organic interlayer morphology and properties, large-area crystal domain orientations and nacre growth. In particular, we describe unique lateral nanogrowths and paired screw dislocations in the aragonite layers, and demonstrate that the organic material sandwiched between aragonite platelets consists of multiple organic layers of varying nano-mechanical resilience. Based on these novel observations and analysis, we propose a spiral growth model that accounts for both [001] vertical propagation via helices that surround numerous screw dislocation cores and simultaneous h010i lateral growth of aragonite sheet structure. These new findings may aid in creating novel organic-inorganic micro/nano composites through synthetic or biomineralization pathways. Keywords: nacre; biomineralization; crystal growthBiomaterials provide fascinating examples of nature's ability to assemble structures of remarkable strength and toughness (Aksay et al. 1996;Addadi & Weiner 1997;Sanchez et al. 2005). Particularly well studied is nacre, or mother of pearl, a composite of aragonite CaCO 3 and organic matrix that is 3000 times more fracture resistant than the pure mineral (Currey 1977;Jackson et al. 1988). Its unique mechanical properties are attributed to a structure of polygonal aragonite platelets, approximately 5 mm across by 0.5 mm thick, wrapped in polysaccharide and protein fibres ( Weiner 1986;Jackson et al. 1989). There exist two principal types of nacre structure: columnar, composed of stacked platelets of rather uniform size with coinciding centres, and sheet, in which the centres of platelets rest on the interfaces between underlying platelets, as in a brick wall. Columnar nacre is known to be deposited in a narrow zone at the margin of the shell, while sheet nacre is deposited over most of the inner surface (Hedegaard 1997). Yet, after 160 years of scientific investigation (Carpenter 1847), the precise features governing nacre's extraordinary strength remain elusive. This is largely due to the lack of structural characterization at the atomic and nanometre scale. Understanding the physical and mechanical properties of nacre at nanometre scale dimensions could lead to the synthesis of novel materials with unprecedented performance.Here, we present a series of observations, using highresolution imaging and nanoscale force measurements, on structural features at the organic-inorganic interface, morphological and mechanical properties of the organic matrix, crystal directions and ultimately sheet nacre growth. We reveal nanometre-scale growths on vertical (010) platelet faces and new details of asperities, i.e. small protrusions, on horizonta...
Studying the dynamic evolution of time-varying volumetric data is essential in countless scientific endeavors. The ability to isolate and track features of interest allows domain scientists to better manage large complex datasets both in terms of visual understanding and computational efficiency. This work presents a new trajectory-based feature tracking technique for use in joint particle/volume datasets. While traditional feature tracking approaches generally require a high temporal resolution, this method utilizes the indexed trajectories of corresponding Lagrangian particle data to efficiently track features over large jumps in time. Such a technique is especially useful for situations where the volume dataset is either temporally sparse or too large to efficiently track a feature through all intermediate timesteps. In addition, this paper presents a few other applications of this approach, such as the ability to efficiently track the internal properties of volumetric features using variables from the particle data. We demonstrate the effectiveness of this technique using real world combustion and atmospheric datasets and compare it to existing tracking methods to justify its advantages and accuracy.
The term “in situ processing” has evolved over the last decade to mean both a specific strategy for visualizing and analyzing data and an umbrella term for a processing paradigm. The resulting confusion makes it difficult for visualization and analysis scientists to communicate with each other and with their stakeholders. To address this problem, a group of over 50 experts convened with the goal of standardizing terminology. This paper summarizes their findings and proposes a new terminology for describing in situ systems. An important finding from this group was that in situ systems are best described via multiple, distinct axes: integration type, proximity, access, division of execution, operation controls, and output type. This paper discusses these axes, evaluates existing systems within the axes, and explores how currently used terms relate to the axes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.