We introduce a visual analysis system with GPU acceleration techniques for large sets of trajectories from complex dynamical systems. The approach is based on an interactive Boolean combination of subsets into a Focus+Context phase‐space visualization. We achieve high performance through efficient bitwise algorithms utilizing runtime generated GPU shaders and kernels. This enables a higher level of interactivity for visualizing the large multivariate trajectory data. We explain how our design meets a set of carefully considered analysis requirements, provide performance results, and demonstrate utility through case studies with many‐particle simulation data from two application areas.
Visualizing distributions from data samples as well as spatial and temporal trends of multiple variables is fundamental to analyzing the output of today's scientific simulations. However, traditional visualization techniques are often subject to a trade-off between visual clutter and loss of detail, especially in a large-scale setting. In this work, we extend the use of spatially organized histograms into a sophisticated visualization system that can more effectively study trends between multiple variables throughout a spatial domain. Furthermore, we exploit the use of isosurfaces to visualize time-varying trends found within histogram distributions. This technique is adapted into both an on-the-fly scheme as well as an in situ scheme to maintain real-time interactivity at a variety of data scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.