In this work, the suitability of nanofibrillated cellulose (NFC) as a novel component for wood coatings has been evaluated. NFC was prepared from two different wood pulps with a high pressure homogeniser and a grinder, depending on the initial fibre size of the two pulps. The fibrillation process was monitored using viscosity measurements and scanning electron microscopy. Viscosity measurements were found to be a suitable, reliable and especially fast and easy method for process monitoring, optimization and quality assessment of the NFC fibrillation process. NFC was mixed with four different waterborne acrylic polymer emulsions and analysed regarding its rheological behaviour. The viscosity of the acrylate-NFC suspensions was dominated by the NFC, whereas the polymer type was of minor importance at the tested concentrations. The viscosity increased exponentially after NFC addition and consequently the viscosity of such suspensions would be precisely adjustable in the considered shear range. During accelerated storage at elevated temperatures, the general flow behaviour did not change; only a slight viscosity increase was observed. The study shows that rheology is an important issue that has to be taken into account when applying NFC as additive in water based coating systems and that NFC is suitable as component for coating applications.
Composite films of nanofibrillated cellulose (NFC), derived from beech wood pulp, and 8 commercial acrylic and alkyd polymeric binders were prepared. Structural and mechanical properties of the composites were assessed by microscopy and tensile tests before and after aging. While the NFC was compatible with acrylate polymers, it formed undesired aggregates during processing with the alkyd polymers. Modulus of elasticity, tensile strength, and elongation at break of prepared films depended on the initial properties of the neat polymers. All composite films were stiffer, stronger, and less extensible than the corresponding neat polymer films. The reinforcing effect increased with increasing NFC content. Aging by artificial weathering strongly affected the mechanical properties of neat polymer and composite films. Alkyd films became, compared to the acrylate films, much stiffer and more brittle after artificial weathering. The results of the mechanical tests are regarded as promising step to use NFC as novel component in wood coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.