A novel innovative approach towards a marketable lab-on-chip system for point-of-care in vitro diagnostics is reported. In a consortium of seven Fraunhofer Institutes a lab-on-chip system called "Fraunhofer ivD-platform" has been established which opens up the possibility for an on-site analysis at low costs. The system features a high degree of modularity and integration. Modularity allows the adaption of common and established assay types of various formats. Integration lets the system move from the laboratory to the point-of-need. By making use of the microarray format the lab-on-chip system also addresses new trends in biomedicine. Research topics such as personalized medicine or companion diagnostics show that multiparameter analyses are an added value for diagnostics, therapy as well as therapy control. These goals are addressed with a low-cost and self-contained cartridge, since reagents, microfluidic actuators and various sensors are integrated within the cartridge. In combination with a fully automated instrumentation (read-out and processing unit) a diagnostic assay can be performed in about 15 min. Via a user-friendly interface the read-out unit itself performs the assay protocol, data acquisition and data analysis. So far, example assays for nucleic acids (detection of different pathogens) and protein markers (such as CRP and PSA) have been established using an electrochemical read-out based on redoxcycling or an optical read-out based on total internal reflectance fluorescence (TIRF). It could be shown that the assay performance within the cartridge is similar to that found for the same assay in a microtiter plate. Furthermore, recent developments are the integration of sample preparation and polymerase chain reaction (PCR) on-chip. Hence, the instrument is capable of providing heating-and-cooling cycles necessary for DNA-amplification. In addition to scientific aspects also the production of such a lab-on-chip system was part of the development since this heavily affects the success of a later market launch. In summary, the Fraunhofer ivD-platform covers the whole value chain ranging from microfluidics, material and polymer sciences, assay and sensor development to the production and assembly design. In this consortium the gap between diagnostic needs and available technologies can be closed.
The degradation of radiolabeled 4(3',5'-dimethyl-3'-heptyl)-phenol [nonylphenol (NP)] was tested with resting cells of Sphingomonas sp. strain TTNP3. Concomitantly to the degradation of NP, a metabolite identified as hydroquinone transiently accumulated and short-chain organic acids were then produced at the expense of hydroquinone. Two other radiolabeled isomers of NP, 4(2',6'-dimethyl-2'-heptyl)-phenol and 4(3',6'-dimethyl-3'-heptyl)-phenol, were synthesized. In parallel experiments, the 4(2',6'-dimethyl-2'-heptyl)-phenol was degraded more slowly than the other isomers of NP by strain TTNP3, possibly because of effects of the side-chain structure on the kinetics of degradation. Alkylbenzenediol and alkoxyphenol derivatives identified as metabolites during previous studies were synthesized and tested as substrates. The derivatives were not degraded, which indicated that the mineralization of NP does not proceed via alkoxyphenol as the principal intermediate. The results obtained led to the elucidation of the degradation pathway of NP isomers with a quaternary alpha-carbon. The proposed mechanism is a type II ipso substitution, leading to hydroquinone and nonanol as the main metabolites and to the dead-end metabolites alkylbenzenediol or alkoxyphenol, depending on the substitution at the alpha-carbon of the carbocationic intermediate formed.
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.