In this work, the thermoelectric (TE) properties of poly(3,4- ethylenedioxylthiophene):poly(styrene sulfonate) (PEDOT:PSS) thin films at room temperature are studied. Different methods have been applied for tuning the TE properties: 1st addition of polar solvent, dimethyl sulfoxide (DMSO), into the PEDOT:PSS solution; 2nd post-treatment of thin films with a mixture of DMSO and ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4). It is verified that DMSO post-treatment is more efficient than DMSO addition in improving the electrical conductivity with a trivial change in the Seebeck coefficient. The power factor is increased up to 30.1 W mK-2 for the film with DMSO post-treatment, while the optimized power factor by DMSO addition is 18.2 W mK-2. It is shown that both DMSO addition and post-treatment induce morphological changes: an interconnected network of elongated PEDOT grains is generated, leading to higher electrical conductivity. In contrast, for t hose films post-treated in the presence of EMIMBF4, an interconnected network of short and circular PEDOT grains with increased polaron density is created, resulting in the improvement in the Seebeck coefficient and a concomitant compromise in the electrical conductivity. An optimized power factor of 38.46 W mK -2 is achieved at 50 vol% of EMIMBF4, which is the highest reported so far for PEDOT:PSS thin films to our knowledge. Assuming a thermal conductivity of 0.17 W mK-1, the corresponding ZT is 0.068 at 300 K. These results demonstrate that post-treatment is a promising approach to enhance the TE properties of PEDOT:PSS thin films. Furthermore, ionic liquid, EMIMBF4, shows the potential for tuning the TE properties of PEDOT:PSS thin films via a more environmentally benign process
In the framework of linear stability theory, we analyze how a liquid-gas mixing layer is affected by several parameters: viscosity ratio, density ratio, and several length scales. These scales reflect the presence of a velocity defect induced by the wake behind the splitter plate and the presence of boundary layers which develop ahead of the plate trailing edge. Incorporating such effects, we compute the various temporal and spatial instability modes and identify their driving instability mechanism based on their Reynolds number dependence, spatial structure, and energy budget. It is examined how the velocity defect modifies the temporal and the spatial stability properties. In addition, the transition from convective to absolute instability occurs at lower velocity contrast between gas and liquid free streams when a defect is present. This transition is also promoted by surface tension. Compared to inviscid stability computations, our spatial stability analysis displays a better agreement with measured growth rates obtained in two recent air-water experiments.
A novel innovative approach towards a marketable lab-on-chip system for point-of-care in vitro diagnostics is reported. In a consortium of seven Fraunhofer Institutes a lab-on-chip system called "Fraunhofer ivD-platform" has been established which opens up the possibility for an on-site analysis at low costs. The system features a high degree of modularity and integration. Modularity allows the adaption of common and established assay types of various formats. Integration lets the system move from the laboratory to the point-of-need. By making use of the microarray format the lab-on-chip system also addresses new trends in biomedicine. Research topics such as personalized medicine or companion diagnostics show that multiparameter analyses are an added value for diagnostics, therapy as well as therapy control. These goals are addressed with a low-cost and self-contained cartridge, since reagents, microfluidic actuators and various sensors are integrated within the cartridge. In combination with a fully automated instrumentation (read-out and processing unit) a diagnostic assay can be performed in about 15 min. Via a user-friendly interface the read-out unit itself performs the assay protocol, data acquisition and data analysis. So far, example assays for nucleic acids (detection of different pathogens) and protein markers (such as CRP and PSA) have been established using an electrochemical read-out based on redoxcycling or an optical read-out based on total internal reflectance fluorescence (TIRF). It could be shown that the assay performance within the cartridge is similar to that found for the same assay in a microtiter plate. Furthermore, recent developments are the integration of sample preparation and polymerase chain reaction (PCR) on-chip. Hence, the instrument is capable of providing heating-and-cooling cycles necessary for DNA-amplification. In addition to scientific aspects also the production of such a lab-on-chip system was part of the development since this heavily affects the success of a later market launch. In summary, the Fraunhofer ivD-platform covers the whole value chain ranging from microfluidics, material and polymer sciences, assay and sensor development to the production and assembly design. In this consortium the gap between diagnostic needs and available technologies can be closed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.