Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text’s category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications.
Context-Current behavioral measures poorly predict treatment outcome in social anxiety disorder (SAD). To our knowledge, this is the first study to examine neuroimaging-based treatment prediction in SAD.Objective-To measure brain activation in patients with SAD as a biomarker to predict subsequent response to cognitive behavioral therapy (CBT).Design-Functional magnetic resonance imaging (fMRI) data were collected prior to CBT intervention. Changes in clinical status were regressed on brain responses and tested for selectivity for social stimuli.
Layer-wise relevance propagation (LRP) is a recently proposed technique for explaining predictions of complex non-linear classifiers in terms of input variables. In this paper, we apply LRP for the first time to natural language processing (NLP). More precisely, we use it to explain the predictions of a convolutional neural network (CNN) trained on a topic categorization task. Our analysis highlights which words are relevant for a specific prediction of the CNN. We compare our technique to standard sensitivity analysis, both qualitatively and quantitatively, using a "word deleting" perturbation experiment, a PCA analysis, and various visualizations. All experiments validate the suitability of LRP for explaining the CNN predictions, which is also in line with results reported in recent image classification studies.
This paper describes the autofeat Python library, which provides a scikit-learn style linear regression model with automated feature engineering and selection capabilities. Complex non-linear machine learning models such as neural networks are in practice often difficult to train and even harder to explain to non-statisticians, who require transparent analysis results as a basis for important business decisions. While linear models are efficient and intuitive, they generally provide lower prediction accuracies. Our library provides a multi-step feature engineering and selection process, where first a large pool of non-linear features is generated, from which then a small and robust set of meaningful features is selected, which improve the prediction accuracy of a linear model while retaining its interpretability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.