Activation of AMP-activated protein kinase (AMPK) is considered an attractive strategy for the treatment of type 2 diabetes. Favorable metabolic effects of AMPK activation are mainly observed in skeletal muscle and liver tissue, whereas the effects in human adipose tissue are only poorly understood. Previous studies, which largely employed the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), suggest an antilipolytic role of AMPK in adipocytes. The aim of this work was to reinvestigate the role of AMPK in the regulation of lipolysis, using the novel allosteric small-molecule AMPK activators A-769662 and 991, with a focus on human adipocytes. For this purpose, human primary subcutaneous adipocytes were treated with A-769662, 991, or AICAR, as a control, before being stimulated with isoproterenol. AMPK activity status, glycerol release, and the phosphorylation of hormone-sensitive lipase (HSL), a key regulator of lipolysis, were then monitored. Our results show that both A-769662 and 991 activated AMPK to a level that was similar to, or greater than, that induced by AICAR. In contrast to AICAR, which as expected was antilipolytic, neither A-769662 nor 991 affected lipolysis in human adipocytes, although 991 treatment led to altered HSL phosphorylation. Furthermore, we suggest that HSL Ser660 is an important regulator of lipolytic activity in human adipocytes. These data suggest that the antilipolytic effect observed with AICAR in previous studies is, at least to some extent, AMPK independent.
SBI-0206965, originally identified as an inhibitor of the autophagy initiator kinase ULK1, has recently been reported as a more potent and selective AMPK inhibitor relative to the widely used, but promiscuous inhibitor Compound C/Dorsomorphin. Here, we studied the effects of SBI-0206965 on AMPK signalling and metabolic readouts in multiple cell types, including hepatocytes, skeletal muscle cells and adipocytes. We observed SBI-0206965 dose dependently attenuated AMPK-activator (991)-stimulated ACC phosphorylation and inhibition of lipogenesis in hepatocytes. SBI-0206965 (≥ 25 μM) modestly inhibited AMPK signalling in C2C12 myotubes, but also inhibited insulin signalling, insulin-mediated/AMPK-independent glucose uptake, and AICA-riboside uptake. We performed an extended screen of SBI-0206965 against a panel of 140 human protein kinases in vitro, which showed SBI-0206965 inhibits several kinases, including members of AMPK-related kinases (NUAK1, MARK3/4), equally or more potently than AMPK or ULK1. This screen, together with molecular modelling, revealed that most SBI-0206965-sensitive kinases contain a large gatekeeper residue with a preference for methionine at this position. We observed that mutation of the gatekeeper methionine to a smaller side chain amino acid (threonine) rendered AMPK and ULK1 resistant to SBI-0206965 inhibition. These results demonstrate that although SBI-0206965 has utility for delineating AMPK or ULK1 signalling and cellular functions, the compound potently inhibits several other kinases and critical cellular functions such as glucose and nucleoside uptake. Our study demonstrates a role for the gatekeeper residue as a determinant of the inhibitor sensitivity and inhibitor-resistant mutant forms could be exploited as potential controls to probe specific cellular effects of SBI-0206965.
ObjectiveThe mechanisms underlying the association between diabetes and inner ear dysfunction are not known yet. The aim of the present study is to evaluate the impact of obesity/insulin resistance on inner ear fluid homeostasis in vivo, and to investigate whether the organ of Corti could be a target tissue for insulin signaling using auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells as an in vitro model.MethodsHigh fat diet (HFD) fed C57BL/6J mice were used as a model to study the impact of insulin resistance on the inner ear. In one study, 12 C57BL/6J mice were fed either control diet or HFD and the size of the inner ear endolymphatic fluid compartment (EFC) was measured after 30 days using MRI and gadolinium contrast as a read-out. In another study, the size of the inner ear EFC was evaluated in eight C57BL/6J mice both before and after HFD feeding, with the same techniques. HEI-OC1 auditory cells were used as a model to investigate insulin signaling in organ of Corti cells.ResultsHFD feeding induced an expansion of the EFC in C57BL/6J mice, a hallmark of inner ear dysfunction. Insulin also induced phosphorylation of protein kinase B (PKB/Akt) at Ser473, in a PI3-kinase-dependent manner. The phosphorylation of PKB was inhibited by isoproterenol and IBMX, a general phosphodiesterase (PDE) inhibitor. PDE1B, PDE4D and the insulin-sensitive PDE3B were found expressed and catalytically active in HEI-OC1 cells. Insulin decreased and AICAR, an activator of AMP-activated protein kinase, increased the phosphorylation at the inhibitory Ser79 of acetyl-CoA carboxylase, the rate-limiting enzyme in de novo lipogenesis. Furthermore, the activity of hormone-sensitive lipase, the rate-limiting enzyme in lipolysis, was detected in HEI-OC1 cells.ConclusionsThe organ of Corti could be a target tissue for insulin action, and inner ear insulin resistance might contribute to the association between diabetes and inner ear dysfunction.
Activation of AMP-activated protein kinase (AMPK) is considered a valid strategy for the treatment of type 2 diabetes. However, despite the importance of adipose tissue for whole-body energy homeostasis, the effect of AMPK activation in adipocytes has only been studied to a limited extent and mainly with the AMP-mimetic 5-aminoimidazole-4-carboxamide-1-b-d-ribofuranoside (AICAR), which has limited specificity. The aim of this study was to evaluate the effect of the allosteric AMPK activators A‑769662 and 991 on glucose uptake in adipocytes. For this purpose, primary rat or human adipocytes, and cultured 3T3-L1 adipocytes, were treated with either of the allosteric activators, or AICAR, and basal and insulin-stimulated glucose uptake was assessed. Additionally, the effect of AMPK activators on insulin-stimulated phosphorylation of Akt and Akt substrate of 160 kDa was assessed. Furthermore, primary adipocytes from ADaM site binding drug-resistant AMPKb1 S108A knock-in mice were employed to investigate specificity of the drugs for the observed effects. Our results show that insulin-stimulated adipocyte glucose uptake was significantly reduced by A‑769662 but not 991, yet neither activator had any clear effects on basal or insulin-stimulated Akt/AS160 signaling. The use of AMPKb1 S108A mutant-expressing adipocytes revealed that the observed inhibition of glucose uptake by A‑769662 is most likely AMPK-independent, a finding which is supported by the rapid inhibitory effect A-769662 exerts on glucose uptake in 3T3-L1 adipocytes. These data suggest that AMPK activation per se does not inhibit glucose uptake in adipocytes and that the effects of AICAR and A-769662 are AMPK-independent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.