An analytic parahermitian matrix admits an eigenvalue decomposition (EVD) with analytic eigenvalues and eigenvectors except in the case of multiplexed data. In this paper, we propose an iterative algorithm for the estimation of the analytic eigenvalues. Since these are generally transcendental, we find a polynomial approximation with a defined error. Our approach operates in the discrete Fourier transform (DFT) domain and for every DFT length generates a maximally smooth association through EVDs evaluated in DFT bins; an outer loop iteratively grows the DFT order and is shown, in general, to converge to the analytic eigenvalues. In simulations, we compare our results to existing approaches.
This paper presents initial progress on formulating minimum variance distortionless response (MVDR) broadband beamforming using a generalised sidelobe canceller (GSC) in the context of polynomial matrix techniques. The quiescent vector is defined as a broadband steering vector, and we propose a blocking matrix design obtained by paraunitary matrix completion. The polynomial approach decouples the spatial and temporal orders of the filters in the blocking matrix, and decouples the adaptive filter order from the construction of the blocking matrix. For off-broadside constraints the polynomial approach is simple, and more accurate and considerably less costly than a standard time domain broadband GSC.
We present an algorithm that extracts analytic eigenvalues from a parahermitian matrix. Operating in the discrete Fourier transform domain, an inner iteration re-establishes the lost association between bins via a maximum likelihood sequence detection driven by a smoothness criterion. An outer iteration continues until a desired accuracy for the approximation of the extracted eigenvalues has been achieved. The approach is compared to existing algorithms.
This paper studies the impact of estimation errors in the sample space-time covariance matrix on its parahermitian matrix eigenvalue decomposition. We provide theoretical bounds for the perturbation of the ground-truth eigenvalues and of the subspaces of their corresponding eigenvectors. We show that for the eigenvalues, the perturbation depends on the norm of the estimation error in the space-time covariance matrix, while the perturbation of eigenvector subspaces can additionally be influenced by the distance between the eigenvalues. We confirm these theoretical results by simulations. Index Terms-broadband array processing; space-time covariance estimation; parahermitian matrix; eigenvalue decomposition.
The rotation of rotor blades of a helicopter induces a Doppler modulation around the main Doppler shift. Such a non-stationary modulation, commonly called micro-Doppler signature, can be used to perform classification of the target. In this paper a model-based automatic helicopter classification algorithm is presented. A sparse signal model for radar return from a helicopter is developed and by means of the theory of sparse signal recovery, the characteristic parameters of the target are extracted and used for the classification. This approach does not require any learning process of a training set or adaptive processing of the received signal. Moreover, it is robust with respect to the initial position of the blades and the angle that the LOS forms with the perpendicular to the plane on which the blades lie. The proposed approach is tested on simulated and real data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.