Photoassociation of ultracold rubidium atoms with femtosecond laser pulses is studied theoretically. The spectrum of the pulses is cut off in order to suppress pulse amplitude at and close to the atomic resonance frequency. This leads to long tails of the laser pulse as a function of time giving rise to coherent transients in the photoassociation dynamics. They are studied as a function of cut-off position and chirp of the pulse. Molecule formation in the electronically excited state is attributed to off-resonant excitation in the strong-field regime.
We investigate the interaction of femtosecond laser pulses with an ensemble of ultracold rubidium atoms by applying shaped excitation pulses with two different types of spectral filtering. Although the pulses, which are frequency filtered with a high pass, have no spectral overlap with molecular states, we observe coherent molecular transients. Similar transients obtained with nearly transform-limited pulses, where only the atomic resonance is removed, reveal two differing oscillatory components. The resulting transients are compared among themselves and supported with quantum dynamical simulations which indicate a photoassociation process. The effect is due to the strong field interaction of the pulse with the colliding atom pair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.