The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.
An analysis of the findings in 21 patients with the Cowden syndrome or the multiple hamartoma syndrome is presented. The Cowden syndrome is a cancer‐associated genodermatosis with characteristic mucocutaneous findings and a wide array of associated abnormalities including a high incidence of breast cancer in female patients. Genetic studies confirmed autosomal dominant inheritance with a high penetrance in both sexes and moderate interfamilial and intrafamilial differences in the expressivity of a number of symptoms. Familial occurrence was present in 4 of the 7 families. There was a strong predominance of female patients (6:1), which may be fortuitous. Mucocutaneous changes were the most constant (100% incidence) and characteristic findings; they almost invariably became manifest in the second decade. Four of our 18 female patients (22%) were treated for breast cancer, a lower incidence than reported previously. No increased incidence of other types of malignancies was found. Craniomegaly (high head circumference) was found to be the most common extracutaneous manifestation (80% incidence); craniomegaly appears to be an important early marker. We also found high incidences of gastrointestinal polyps (approximately 60%) and cutaneous fibromas (76%), while the incidence of thyroid abnormalities, thus far regarded as the most common extracutaneous finding, was similar to that reported previously (62%). G‐banded karyotype and preliminary DNA‐repair studies revealed no clear abnormalities. No linkage with the loci of HLA, and immunoglobulin haplotypes was found.
Fanconi anaemia (FA) is an autosomal recessive disorder characterized by a diversity of clinical symptoms including skeletal abnormalities, progressive bone marrow failure and a marked predisposition to cancer. FA cells exhibit chromosomal instability and hyper-responsiveness to the clastogenic and cytotoxic effects of bifunctional alkylating (cross-linking) agents, such as diepoxybutane (DEB) and mitomycin C (MMC). Five complementation groups (A-E) have been distinguished on the basis of somatic cell hybridization experiments, with group FA-A accounting for over 65% of the cases analysed. A cDNA for the group C gene (FAC) was reported and localized to chromosome 9q22.3 (ref.8). Genetic map positions were recently reported for two more FA genes, FAA (16q24.3) and FAD (3p22-26). Here we report the isolation of a cDNA representing the FAA gene, following an expression cloning method similar to the one used to clone the FAC gene. The 5.5-kb cDNA has an open reading frame of 4,368 nucleotides. In contrast to the 63-kD cytosolic protein encoded by the FAC gene, the predicted FAA protein (M(r) 162, 752) contains two overlapping bipartite nuclear localization signals and a partial leucine zipper consensus, which are suggestive of a nuclear localization.
Fanconi anemia (FA) is an autosomal recessive disease with diverse clinical symptoms including developmental anomalies, bone marrow failure and early occurrence of malignancies. In addition to spontaneous chromosome instability, FA cells exhibit cell cycle disturbances and hypersensitivity to cross-linking agents. Eight complementation groups (A-H) have been distinguished, each group possibly representing a distinct FA gene. The genes mutated in patients of complementation groups A (FANCA; refs 4,5) and C (FANCC; ref. 6) have been identified, and FANCD has been mapped to chromosome band 3p22-26 (ref. 7). An additional FA gene has recently been mapped to chromosome 9p (ref. 8). Here we report the identification of the gene mutated in group G, FANCG, on the basis of complementation of an FA-G cell line and the presence of pathogenic mutations in four FA-G patients. We identified the gene as human XRCC9, a gene which has been shown to complement the MMC-sensitive Chinese hamster mutant UV40, and is suspected to be involved in DNA post-replication repair or cell cycle checkpoint control. The gene is localized to chromosome band 9p13 (ref. 9), corresponding with a known localization of an FA gene.
Fanconi anemia (FA) is an autosomal recessive syndrome featuring diverse symptoms including progressive bone marrow failure and early occurrence of acute myeloid leukemia. Nine genetic subtypes have been described for FA (A, B, C, D1, D2, E, F, G, and L), all of which have been connected to distinct disease genes, except B. Here we report on 8 unrelated FA patients who were excluded from the known subtypes on the basis of phenotypic correction or genetic data. Four of these cell lines failed to complement each other in somatic cell hybrids and therefore represent a new group, termed FA-I. The remaining cell lines complemented group FA-I but did not complement each other, thus representing a second new group, FA-J. Both FA-I and -J cell lines were capable of forming an FA multiprotein core complex. This complex is required for activation of the FANCD2 protein by mono-ubiquitination, a key downstream event in the FA pathway. In FA-I cells FANCD2 was not mono-ubiquitinated, indicating a defect upstream in the FA pathway, whereas in FA-J cells FANCD2 was mono-ubiquitinated, indicating a downstream defect. Our results suggest that the FA pathway of genome stabilization may be controlled by at least 11 different genes, including FANCI and FANCJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.