Timing of the repetitive movements that constitute any rhythmic behavior is regulated by intrinsic properties of the central nervous system rather than by sensory feedback from moving parts of the body. Evidence of this permits resolution of the long-standing controversy over the neural basis of rhythmic behavior and aids in the identification of this mechanism as a general principle of neural organization applicable to all animals with central nervous systems.
Underwater flow sensing is important for many robotics and military applications, including underwater robots and vessels. We report the development of micromachined, distributed flow sensors based on a biological inspiration, the fish lateral line sensors. Design and fabrication processes for realizing individual lateral line sensor nodes are discussed in this paper, along with preliminary characterization results.
With the advent of significant collaborations between researchers who study insect walking and robotics engineers interested in constructing adaptive legged robots, insect walking is once again poised to make a more significant scientific contribution than the numbers of participants in the field might suggest. This review outlines current knowledge of the physiological basis of insect walking with an emphasis on recent new developments in biomechanics and genetic dissection of behavior, and the impact this knowledge is having on robotics. Engineers have begun to team with neurobiologists to build walking robots whose physical design and functional control are based on insect biology. Such an approach may have benefits for engineering, by leading to the construction of better-performing robots, and for biology, by allowing real-time and real-world tests of critical hypotheses about how locomotor control is effected. It is argued that in order for the new field of biorobotics to have significant influence it must adopt criteria for performance and an experimental approach to the development of walking robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.