Three distinct chemical classes for the control of gastrointestinal nematodes are available: benzimidazoles, imidazothiazoles, and macrocyclic lactones. The relentless development of drug resistance has severely limited the usefulness of such drugs and the search for a new class of compounds preferably with a different mode of action is an important endeavor. Marcfortine A (1), a metabolite of Penicillium roqueforti, is structurally related to paraherquamide A (2), originally isolated from Penicillium paraherquei. Chemically the two compounds differ only in one ring; in marcfortine A, ring G is six-membered and carries no substituents, while in paraherquamide A, ring G is five-membered with methyl and hydroxyl substituents at C14. Paraherquamide A (2) is superior to marcfortine A as a nematocide. 2-Desoxoparaherquamide A (PNU-141962, 53) has excellent nematocidal activity, a superior safely profile, and is the first semi-synthetic member of this totally new class of nematocides that is a legitimate candidate for development. This review describes the chemistry, efficacy and mode of action of PNU-141962.
Six analogues of the anthelmintic cyclodepsipeptide PF1022A were prepared, each containing a small ring fused to the macrocycle to restrict the number of conformations the larger ring can adopt. It was anticipated that such conformational changes could lead to enhanced biological activity and selectivity. The analogues form two series of three members each. In one series, a carbon-based molecular bridge joins the methyl of a leucine residue with the methyl of its closest lactic acid residue to form five-, six-, and seven-membered lactam rings. In the second series, a leucine residue is replaced with five-, six-, and seven-membered nitrogen heterocycles. Decreasing the size of the small ring in the lactam series increasingly distorts the macrocycle and consistently decreases activity relative to PF1022A. In the leucine series, a similar trend is observed. Molecular modeling of PF1022A along with the analogues described herein suggests that the ability to exist in a highly symmetrical conformational state is a necessary condition for biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.