Spatially resolved ambient mass spectrometry imaging methods have gained popularity to characterize cancer sites and their borders using molecular changes in the lipidome. This utility, however, is predicated on metabolic homogeneity at the border, which would create a sharp molecular transition at the morphometric borders. We subjected murine models of human medulloblastoma brain cancer to mass spectrometry imaging, a technique that provides a direct readout of tissue molecular content in a spatially resolved manner. We discovered a distance-dependent gradient of cancer-like lipid molecule profiles in the brain tissue within 1.2 mm of the cancer border, suggesting that a cancer-like state progresses beyond the histologic border, into the healthy tissue. The results were further corroborated using orthogonal liquid chromatography and mass spectrometry (LC-MS) analysis of selected tissue regions subjected to laser capture microdissection. LC-MS/MS analysis for robust identification of the affected molecules implied changes in a number of different lipid classes, some of which are metabolized from the essential docosahexaenoic fatty acid (DHA) present in the interstitial fluid. Metabolic molecular borders are thus not as sharp as morphometric borders, and mass spectrometry imaging can reveal molecular nuances not observed with microscopy. Caution must be exercised in interpreting multimodal imaging results stipulated on a coincidental relationship between metabolic and morphometric borders of cancer, at least within animal models used in preclinical research.
A reduced surface electric field in an AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer. The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions. Compared with the HEMTs with conventional sourceconnected field plates and double field plates, the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge. By optimizing both the length of Mg-doped layer, Lm, and the doping concentration, a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure, respectively. In a device with V GS = −5 V, Lm = 1.5 µm, a peak Mg doping concentration of 8×10 17 cm −3 and a drift region length of 10 µm, the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.
Polymer-dispersed liquid crystal (PDLC) composites have long been a focus of study for their unique electro-optical properties which have resulted in various applications such as switchable (transparent/translucent) windows. These composites are manufactured using desirable "bottomup" techniques, such as phase separation of a liquid crystal/polymer mixture, which enable production of PDLC films at very large scales. LC domains within PDLCs are typically spheroidal, as opposed to rectangular for an LCD panel, and thus exhibit substantially different behaviour in the presence of an external field. The fundamental difference between spheroidal and rectangular nematic domains is that the former results in the presence of nanoscale orientational defects in LC order while the latter does not. Progress in the development and optimization of PDLC electrooptical properties has progressed at a relatively slow pace due to this increased complexity. In this work, continuum simulations are performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. Using a simplified elliptic cylinder (microcapillary) geometry as an approximation of spheroidal PDLC domains, the effects of geometry (aspect ratio), surface anchoring, and external field strength are studied through the use of the Landau-de Gennes model of the nematic LC phase. * nmabukhdeir@uwaterloo.ca;
A novel microstrip diplexer with low insertion loss, high selectivity and isolation performance is proposed through the combination of two compact filters composed of short-circuit centred stepped impedance resonators and, a side-coupled shorted microstrip line, which are designed for GPS and UWB application, respectively. Due to the intrinsic characteristics and mutual loading effect of the two filters, multiple transmission zeros can be created to improve the out-ofband rejection and isolation of the diplexer. More compact size is obtained without an extra junction matching networks. Simulated results of the fabricated diplexer agree well with measured ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.