In the present study, intraplantar carageenan induced increased mechanical allodynia, phosphorylation of PKB/Akt and GluR1 ser 845 (PKA site) as well as GluR1, but not GluR2 movement into neuronal membranes. This change in membrane GluR1/GluR2 ratio is indicative of Ca ++ permeable AMPA receptor insertion. Pain behavior was reduced and biochemical changes blocked by spinal pretreatment, but not post-treatment, with a tumor necrosis factor (TNF) antagonist, Etanercept (100µg). Pain behavior was also reduced by spinal inhibition of phosphatidylinositol 3-kinase (PI-3K) (wortmannin; 1 and 5µg) and LY294002; 50 and 100µg) and Akt (Akt inhibitor IV; 3µg). Phosphorylated Akt was found exclusively in neurons in grey matter and in oligodendrocytes in white matter. Interestingly, this increase was seen first in superficial dorsal horn and α-motor neurons (peak 45 min) and later (peak 2 h post-injection) in deep dorsal horn neurons. Akt and GluR1 phosphorylation, AMPA receptor trafficking and mechanical allodynia were all TNF dependent. Whether phosphorylation of Akt and GluR1 are in series or in parallel or upstream of pain behavior remains to be determined. Certainly, TNF mediated GluR1 trafficking appears to play a major role in inflammatory pain and TNF mediated effects such as these could represent a path by which glia contribute to neuronal sensitization (spinal LTP) and pathological pain.
BackgroundPaw carrageenan induces activation of phosphatidylinositol 3-kinase (PI-3K) and Akt in dorsal horn neurons in addition to induction of pain behavior. Spinal PI-3K activation is also thought to be required for inflammation-induced trafficking of GluA1, AMPA receptor subunits, into plasma membranes from cytosol. Phosphorylation of Akt has a unique time course. It occurs first in the superficial dorsal horn (0.75 h), then soon dissipates and is followed an hour later by Akt phosphorylation in deeper dorsal horn laminae, primarily lamina V. Initially, we wished to determine if Akt phosphorylation in the deeper laminae were dependent on the presence of lamina I, neurokinin receptor bearing projection neurons. As the study progressed, our aims grew to include the question, whether carrageenan-induced GluA1 subunit trafficking was downstream of Akt phosphorylation.ResultsRats pretreated with spinal saporin conjugated to a stabilized form of substance P had substantial loss of neurons with neurokinin 1 receptors throughout their superficial, but not deep dorsal horns. Animals pre-treated with substance P-saporin exhibited no change in locomotor ability and a small, but significant decrease in carrageenan-induced mechanical allodynia when compared to animals pre-treated with spinal saporin alone. Importantly, carrageenan-induced phosphorylation of Akt was blocked, in the substance P-saporin treated group, throughout the spinal cord grey matter. In marked contrast, carrageenan induced-trafficking of the GluA1 receptor subunit increased equivalently in both treatment groups.ConclusionsWe infer from these data that 1) phosphorylation of Akt in the deep dorsal horn is dependent on prior activation of NK1 receptor bearing cells in superficial dorsal horn, and 2) there are parallel spinal intracellular cascades initiated by the carrageenan injection downstream of PI-3K activation, including one containing Akt and another involving GluA1 trafficking into neuronal plasma membranes that separately lead to enhanced pain behavior. These results imply that the two pathways downstream of PI-3K can be activated separately and therefore should be able to be inhibited independently.
PI3-kinases (PI3Ks) participate in nociception within spinal cord, dorsal root ganglion (DRG) and peripheral nerves. To extend our knowledge, we immunohistochemically stained for each of the four Class I PI3K isoforms along with several cell specific markers within lumbar spinal cord, DRG and sciatic nerve of naïve rats. Intrathecal and intraplantar isoform specific antagonists were given as pre-treatments before intraplantar carrageenan; pain behavior was then assessed over time. The α-isoform was localized to central terminals of primary afferent fibers in spinal cord laminae IIi-IV as well as to neurons in ventral horn and DRG. The PI3Kβ isoform was the only Class I isoform seen in dorsal horn neurons, it was also observed in DRG, Schwann cells and axonal paranodes. The δ-isoform was found in spinal cord white matter oligodendrocytes and radial astrocytes, while the γ-isoform was seen in a subpopulation of IB4-positive DRG neurons. No isoform co-localized with microglial markers or satellite cells in naïve tissue. Only the PI3Kβ antagonist, but none of the other antagonists, had anti-allodynic effects when administered intrathecally; coincident with reduced pain behavior, this agent completely blocked paw carrageenan-induced dorsal horn 2-amino-3-(3-hydroxy-5-methylisoxazol- 4-yl) propanoic acid (AMPA) receptor trafficking to plasma membranes. Intraplantar administration of the γ-antagonist prominently reduced pain behavior. These data suggest that each isoform displays specificity with regard to neuronal type as well as to specific tissues. Furthermore, each PI3K isoform has a unique role in development of nociception and tissue inflammation.
Peripheral inflammation induces sensitization of nociceptive spinal cord neurons. Both spinal tumor necrosis factor (TNF) and neuronal membrane insertion of Ca2+ permeable AMPA receptor (AMPAr) contribute to spinal sensitization and resultant pain behavior, molecular mechanisms connecting these two events have not been studied in detail. Intrathecal (i.t.) injection of TNF-blockers attenuated paw carrageenan-induced mechanical and thermal hypersensitivity. Levels of GluA1 and GluA4 from dorsal spinal membrane fractions increased in carrageenan-injected rats compared to controls. In the same tissue, GluA2 levels were not altered. Inflammation-induced increases in membrane GluA1 were prevented by i.t. pre-treatment with antagonists to TNF, PI3K, PKA and NMDA. Interestingly, administration of TNF or PI3K inhibitors followed by carrageenan caused a marked reduction in plasma membrane GluA2 levels, despite the fact that membrane GluA2 levels were stable following inhibitor administration in the absence of carrageenan. TNF pre-incubation induced increased numbers of Co2+ labeled dorsal horn neurons, indicating more neurons with Ca2+ permeable AMPAr. In parallel to Western blot results, this increase was blocked by antagonism of PI3K and PKA. In addition, spinal slices from GluA1 transgenic mice, which had a single alanine replacement at GluA1 ser 845 or ser 831 that prevented phosphorylation, were resistant to TNF-induced increases in Co2+ labeling. However, behavioral responses following intraplantar carrageenan and formalin in the mutant mice were no different from littermate controls, suggesting a more complex regulation of nociception. Co-localization of GluA1, GluA2 and GluA4 with synaptophysin on identified spinoparabrachial neurons and their relative ratios were used to assess inflammation-induced trafficking of AMPAr to synapses. Inflammation induced an increase in synaptic GluA1, but not GluA2. Although total GluA4 also increased with inflammation, co-localization of GluA4 with synaptophysin, fell short of significance. Taken together these data suggest that peripheral inflammation induces a PI3K and PKA dependent TNFR1 activated pathway that culminates with trafficking of calcium permeable AMPAr into synapses of nociceptive dorsal horn projection neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.