This review introduces the basic concepts and terms associated with impedance and techniques of measuring impedance. The focus of this review is on the application of this transduction method for sensing purposes. Examples of its use in combination with enzymes, antibodies, DNA and with cells will be described. Important fields of application include immune and nucleic acid analysis. Special attention is devoted to the various electrode design and amplification schemes developed for sensitivity enhancement. Electrolyte insulator semiconductor (EIS) structures will be treated separately.
Quantum-dot-based photoelectrochemical sensors are powerful alternatives for the detection of chemicals and biochemical molecules compared to other sensor types, which is the primary reason as to why they have become a hot topic in nanotechnology-related analytical methods. These sensors basically consist of QDs immobilized by a linking molecule (linker) to an electrode, so that upon their illumination, a photocurrent is generated which depends on the type and concentration of the respective analyte in the immediate environment of the electrode. The present review provides an overview of recent developments in the fabrication methods and sensing concepts concerning direct and indirect interactions of the analyte with quantum dot modified electrodes. Furthermore, it describes in detail the broad range of different sensing applications of such quantum-dot-based photoelectrochemical sensors for inorganic and organic (small and macro-) molecules that have arisen in recent years. Finally, a number of aspects concerning current challenges on the way to achieving real-life applications of QD-based photochemical sensing are addressed.
Layer-by-layer
(LbL) assembly is a widely used tool for engineering materials and
coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald,
we discuss the developments and applications that are to come in LbL
assembly, focusing on coatings, bulk materials, membranes, nanocomposites,
and delivery vehicles.
A novel multilayer cytochrome c electrode for the quantification of superoxide radical concentrations is introduced. The electrode consists of alternating layers of cytochrome c and poly(aniline(sulfonic acid)) on a gold wire electrode. The formation of multilayer structures was proven by SPR experiments. Assemblies with 2-15 protein layers showed electrochemical communication with the gold electrode. For every additional layer, a substantial increase in electrochemically active cytochrome c (cyt. c) was found. For electrodes of more than 10 layers, the increase was more than 1 order of magnitude as compared to monolayer electrode systems. Thermodynamic and kinetic parameters of the electrodes were characterized. The mechanism of electron transfer within the multilayer assembly was studied, with results suggesting a protein-protein electron-transfer model. Electrodes of 2-15 layers were applied to the in vitro quantification of enzymatically generated superoxide, showing superior sensitivity as compared to a monolayer-based sensor. An electrode with 6 cyt. c/PASA layers showed the highest sensitivity of the systems studied, giving an increase in sensitivity of half an order of magnitude versus the that of the monolayer electrode. The stability of the system was optimized using thermal treatment, resulting in no loss in sensor signal or protein loading after 10 successive measurements or 2 days of storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.