Computational thinking (CT) has been described as the use of abstraction, automation, and analysis in problem-solving [3]. We examine how these ways of thinking take shape for middle and high school youth in a set of NSF-supported programs. We discuss opportunities and challenges in both in-school and after-school contexts. Based on these observations, we present a "use-modify-create" framework, representing three phases of students' cognitive and practical activity in computational thinking. We recommend continued investment in the development of CT-rich learning environments, in educators who can facilitate their use, and in research on the broader value of computational thinking.
The ubiquity of AI in society means the time is ripe to consider what educated 21st century digital citizens should know about this subject. In May 2018, the Association for the Advancement of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA) formed a joint working group to develop national guidelines for teaching AI to K-12 students. Inspired by CSTA's national standards for K-12 computing education, the AI for K-12 guidelines will define what students in each grade band should know about artificial intelligence, machine learning, and robotics. The AI for K-12 working group is also creating an online resource directory where teachers can find AI- related videos, demos, software, and activity descriptions they can incorporate into their lesson plans. This blue sky talk invites the AI research community to reflect on the big ideas in AI that every K-12 student should know, and how we should communicate with the public about advances in AI and their future impact on society. It is a call to action for more AI researchers to become AI educators, creating resources that help teachers and students understand our work.
In this paper, we discuss the applicat[ons ant! implications of the Programmable Bricks -s tiny, portable computer embecfded~nside a LE~Q'J brick, capable of interacting with the phys!cal world in a large variety of ways. We describe how Programmable Bricks make possible a wide range of new design activities for children, and we discuss experiences in using Programmable Bricks in three types of applications: autonomous creatures, active environments, and personal science experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.