The protein REPS2 is implicated in growth factor receptor-mediated endocytosis and signalling, and its expression is downregulated in androgen-independent prostate cancer cells. Herein, the NF-jB subunit p65 is identified as a human REPS2 protein partner, interacting with the EH domain of REPS2. Using crystal structure data from literature and experimental data from yeast and mammalian two-hybrid analysis, the results indicate that the NPF-motif in p65 acts as binding site for the EH domain in REPS2. However, in cultured prostate cancer cells, the REPS2-p65 interaction is triggered upon stimulation with phorbol ester (PMA). This indicates that PMA-sensitive signalling pathways can affect the interaction between REPS2 and p65. During prostate cancer progression from androgen-dependent to androgen-independent growth, downregulation of REPS2 is accompanied by upregulation of NF-jB activity. This might involve loss of REPS2-p65 interaction, which would lead to increased NF-jB activity. Androgen-deprivation causes apoptosis of prostate cancer cells, and activated NF-jB is a known inhibitor of apoptosis. Hence, decreased expression of REPS2 might be a key factor, causing prostate cancer cells to become resistant to induction of apoptosis by androgen deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.