Vulvar lichen sclerosus and lichen planus are T-cell-mediated chronic skin disorders. Although autoimmunity has been suggested, the exact pathogenesis of these disorders is still unknown. Therefore, the aim of the current study was to investigate the molecular and immunological mechanisms critical to the pathogenesis of vulvar lichen sclerosus and lichen planus. By using gene expression profiling and real-time RT-PCR experiments, we demonstrated a significantly increased expression of the pro-inflammatory cytokines (IFNγ, CXCR3, CXCL9, CXCL10, CXCL11, CCR5, CCL4, and CCL5) specific for a Th1 IFNγ-induced immune response. In addition, BIC/microRNA-155 (miR-155)--a microRNA involved in regulation of the immune response--was significantly upregulated in lichen sclerosus and lichen planus (9.5- and 17.7-fold change, respectively). Immunohistochemistry showed a significant T-cell response, with pronounced dermal infiltrates of CD4(+), CD8(+), and FOXP3(+) cells. In conclusion, these data demonstrate an autoimmune phenotype in vulvar lichen sclerosus and lichen planus, characterized by increased levels of Th1-specific cytokines, a dense T-cell infiltrate, and enhanced BIC/miR-155 expression.
Purpose. Wnt signaling regulates the fine balance between stemness and differentiation. Here, the role of Wnt signaling to maintain the balance between estrogen-induced proliferation and progesterone-induced differentiation during the menstrual cycle, as well as during the induction of hyperplasia and carcinogenesis of the endometrium, was investigated. Experimental Design: Endometrial gene expression profiles from estradiol (E 2 ) and E 2 + medroxyprogesterone acetate-treated postmenopausal patients were combined with profiles obtained during the menstrual cycle (PubMed; GEO DataSets). Ishikawa cells were transfected with progesterone receptors and Wnt inhibitors dickkopf homologue 1 (DKK1) and forkhead box O1 (FOXO1), measuring Wnt activation. Expression of DKK1 and FOXO1 was inhibited by use of sequence-specific short hairpins. Furthermore, patient samples (hormone-treated endometria, hyperplasia, and endometrial cancer) were stained for Wnt activation using nuclear β-catenin and CD44. Results: In vivo, targets and components of the Wnt signaling pathway (among them DKK1 and FOXO1) are regulated by E 2 and progesterone. In Wnt-activated Ishikawa cells, progesterone inhibits Wnt signaling by induction of DKK1 and FOXO1. Furthermore, using siRNA-mediated knockdown of both DKK1 and FOXO1, progesterone inhibition of Wnt signaling was partly circumvented. Subsequently, immunohistochemical analysis of the Wnt target gene CD44 showed that progesterone acted as an inhibitor of Wnt signaling in hyperplasia and in well-differentiated endometrial cancer. The female sex hormones estradiol (E 2 ) and progesterone play rate-limiting roles in the cyclical renewal of the inner layer of the uterus (endometrium). In the first half of the regular menstrual cycle, the proliferation phase, E 2 is required to expand the endometrial layer by inducing cell proliferation. In the second half of the menstrual cycle, the secretory phase, progesterone levels increase, which antagonizes the proliferative activity of E 2 by inducing differentiation of epithelial and stromal cells of the endometrium (1). Thus, inhibition of E 2 -induced proliferation by progesterone is crucial for the maintenance of homeostasis in the endometrium.Increased estrogen signaling often underlies endometrial hyperplasia and is a well-established risk factor for endometrial cancer (2). Because progesterone inhibits estrogen-induced endometrial proliferation, progesterone has been used in its synthetic form [i.e., medroxyprogesterone acetate (MPA)] in palliative treatment of advanced and recurrent endometrial cancer with modest though significant response rates (15-25%; ref. 3). Progesterone has also been used as a primary treatment for endometrial carcinoma confined to the endometrial layer of the uterus, for example, in premenopausal women determined to preserve fertility. Response rates in these women can be up to 60% (4, 5), indicating that progesterone signaling in well-differentiated endometrial cancer is a potent inhibitor of endometrial carcinogene...
Human papillomavirus (HPV) infections may result in benign hyperplasia, caused by low-risk HPV types, or (pre)malignant lesions caused by high-risk HPV types. The molecular basis of this difference in malignant potential is not completely understood. Here, we performed gene profiling of different HPV infected vulvar tissues (condylomata acuminata (n 5 5), usual type vulvar intraepithelial neoplasia (uVIN) (n 5 9)) and control samples (n 5 14) using Affymetrix Human U133A plus 2 GeneChips. Data were analyzed using OmniViz V R , Partek V R and Ingenuity V R Software. Results were validated by real-time RT-PCR and immunostaining. Although similarities were observed between gene expression profiles of low-and high-risk HPV infected tissues (e.g., absence of estrogen receptor in condylomata and uVIN), high-risk HPV infected tissues showed more proliferation and displayed more DNA damage than tissues infected with low-risk HPV. These observations were confirmed by differential regulation of cell cycle checkpoints and by increased expression of DNA damage-biomarkers p53 and cH2AX. Furthermore, FANCA, FANCD2, BRCA1 and RAD51, key players in the DNA damage response, were significantly upregulated (p < 0.05). In addition, we compared our results with publicly available gene expression profiles of various other HPV-induced cancers (vulva, cervix and head-and-neck). This showed p16 INK4a was the most significant marker to detect a high-risk HPV infection, but no other markers could be found. In conclusion, this study provides insight into the molecular basis of low-and high-risk HPV infections and indicates two main pathways (cell cycle and DNA damage response) that are much stronger affected by high-risk HPV as compared to low-risk HPV.Worldwide, human papillomavirus (HPV) is the most common sexually transmitted infection, with an 80% life-time infection risk. 1 Fortunately, the majority of these HPV infections ($ 90%) are cleared within one to two years, without further consequences for the host. 2 Persistent infections, however, are a well-established risk factor for a large spectrum of epithelial lesions, ranging from benign hyperplasia, caused by low-risk HPV types, to (pre)malignant lesions caused by high-risk HPV types.The best known high-risk HPV related disorder is the second most common cancer in women, namely cervical cancer, with 500,000 new cases each year worldwide resulting in 250,000 deaths every year. 3 Persistent HPV infections have also been associated with other anogenital squamous cell carcinomas, including vulvar, vaginal, anal and penile cancers and their precursors. Furthermore, recent epidemiological, molecular and clinical evidence indicate that high-risk HPV (especially HPV type 16) accounts for the development of approximately 20-30% of squamous cell carcinomas of the head-and-neck. 4,5 The molecular basis of the difference in malignant potential between low-and high-risk HPV infections is not
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.