Certi fied athletic trainers routinely deal with both over-the-counter (OTC) and prescription medications in the performance of their jobs. It is important to ensure that medical and legal guidelines are followed for the dispensing of drugs. To ensure compliance and continuity of care, it is recommended that policies and procedures be established for athletic training facilities for both OTC and prescription drugs. In recent years, there have been several highly public cases reported in the media in which prescription medications were improperly dispensed in the athletic training room setting. This can create legalliability concerns for sports-medicine staff and expose student athletes to increased risks. The University of Georgia Athletic Association (UGAA) has established both OTC-medication protocols and prescription-drug-program policies and procedures. The purpose of this article is to share our experience in managing medications in the athletic training room.
Background
Initial protocols for return to play cardiac testing in young competitive athletes following SARS‐CoV‐2 infection recommended cardiac troponin (cTn) to screen for cardiac involvement. This study aimed to define the diagnostic yield of cTn in athletes undergoing cardiovascular testing following SARS‐CoV‐2 infection.
Methods and Results
This prospective, observational cohort study from ORCCA (Outcomes Registry for Cardiac Conditions in Athletes) included collegiate athletes who underwent cTn testing as a component of return to play protocols following SARS‐CoV‐2 infection. The cTn values were stratified as undetectable, detectable but within normal limits, and abnormal (>99% percentile). The presence of probable or definite SARS‐CoV‐2 myocardial involvement was compared between those with normal versus abnormal cTn levels. A total of 3184/3685 (86%) athletes in the ORCCA database met the inclusion criteria for this study (age 20±1 years, 32% female athletes, 28% Black race). The median time from SARS‐CoV‐2 diagnosis to cTn testing was 13 days (interquartile range, 11, 18 days). The cTn levels were undetectable in 2942 athletes (92%), detectable but within normal limits in 210 athletes (7%), and abnormal in 32 athletes (1%). Of the 32 athletes with abnormal cTn testing, 19/32 (59%) underwent cardiac magnetic resonance imaging, 30/32 (94%) underwent transthoracic echocardiography, and 1/32 (3%) did not have cardiac imaging. One athlete with abnormal troponin met the criteria for definite or probable SARS‐CoV‐2 myocardial involvement. In the total cohort, 21/3184 (0.7%) had SARS‐CoV‐2 myocardial involvement, among whom 20/21 (95%) had normal troponin testing.
Conclusions
Abnormal cTn during routine return to play cardiac screening among competitive athletes following SARS‐CoV‐2 infection appears to have limited diagnostic utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.