Estimating the rate and scale of dispersal is essential for predicting the dynamics of fragmented populations, yet empirical estimates are typically imprecise and often negatively biased. We maximized detection of dispersal events between small, subdivided populations of water voles (Arvicola terrestris) using a novel method that combined direct capture-mark-recapture with microsatellite genotyping to identify parents and offspring in different populations and hence infer dispersal. We validated the method using individuals known from trapping data to have dispersed between populations. Local populations were linked by high rates of juvenile dispersal but much lower levels of adult dispersal. In the spring breeding population, 19% of females and 33% of males had left their natal population of the previous year. The average interpopulation dispersal distance was 1.8 km (range 0.3-5.2 km). Overall, patterns of dispersal fitted a negative exponential function. Information from genotyping increased the estimated rate and scale of dispersal by three- and twofold, respectively, and hence represents a powerful tool to provide more realistic estimates of dispersal parameters.
Collecting faeces is viewed as a potentially efficient way to sample elusive animals. Nonetheless, any biases in estimates of population composition associated with such sampling remain uncharacterized. The goal of this study was to compare estimates of genetic composition and sex ratio derived from Eurasian otter Lutra lutra spraints (faeces) with estimates derived from carcasses. Twenty per cent of 426 wild-collected spraints from SW England yielded composite genotypes for 7-9 microsatellites and the SRY gene. The expected number of incorrect spraint genotypes was negligible, given the proportions of allele dropout and false allele detection estimated using paired blood and spraint samples of three captive otters. Fifty-two different spraint genotypes were detected and compared with genotypes of 70 otter carcasses from the same area. Carcass and spraint genotypes did not differ significantly in mean number of alleles, mean unbiased heterozygosity or sex ratio, although statistical power to detect all but large differences in sex ratio was low. The genetic compositions of carcass and spraint genotypes were very similar according to confidence intervals of theta and two methods for assigning composite genotypes to groups. A distinct group of approximately 11 carcass and spraint genotypes was detected using the latter methods. The results suggest that spraints can yield unbiased estimates of population genetic composition and sex ratio.
Theory predicts that the impact of gene flow on the genetic structure of populations in patchy habitats depends on its scale and the demographic attributes of demes (e.g. local colony sizes and timing of reproduction), but empirical evidence is scarce. We inferred the impact of gene flow on genetic structure among populations of water voles Arvicola terrestris that differed in average colony sizes, population turnover and degree of patchiness. Colonies typically consisted of few reproducing adults and several juveniles. Twelve polymorphic microsatellite DNA loci were examined. Levels of individual genetic variability in all areas were high (H(O) = 0.69-0.78). Assignments of juveniles to parents revealed frequent dispersal over long distances. The populations showed negative F(IS) values among juveniles, F(IS) values around zero among adults, high F(ST) values among colonies for juveniles, and moderate, often insignificant, F(ST) values for parents. We inferred that excess heterozygosity within colonies reflected the few individuals dispersing from a large area to form discrete breeding colonies. Thus pre-breeding dispersal followed by rapid reproduction results in a seasonal increase in differentiation due to local family groups. Genetic variation was as high in low-density populations in patchy habitats as in populations in continuous habitats used for comparison. In contrast to most theoretical predictions, we found that populations living in patchy habitats can maintain high levels of genetic variability when only a few adults contribute to breeding in each colony, when the variance of reproductive success among colonies is likely to be low, and when dispersal between colonies exceeds nearest-neighbour distances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.