A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at-a-point flood defences is seen as both unrealistic and undesirable. The contribution of 'soft engineering' solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river-floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment-scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub-catchment scale, representing 20-40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de-synchronization of the timings of sub-catchment flood waves. Sub-catchment floodplain forest restoration over 10-15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post-restoration.
Collecting faeces is viewed as a potentially efficient way to sample elusive animals. Nonetheless, any biases in estimates of population composition associated with such sampling remain uncharacterized. The goal of this study was to compare estimates of genetic composition and sex ratio derived from Eurasian otter Lutra lutra spraints (faeces) with estimates derived from carcasses. Twenty per cent of 426 wild-collected spraints from SW England yielded composite genotypes for 7-9 microsatellites and the SRY gene. The expected number of incorrect spraint genotypes was negligible, given the proportions of allele dropout and false allele detection estimated using paired blood and spraint samples of three captive otters. Fifty-two different spraint genotypes were detected and compared with genotypes of 70 otter carcasses from the same area. Carcass and spraint genotypes did not differ significantly in mean number of alleles, mean unbiased heterozygosity or sex ratio, although statistical power to detect all but large differences in sex ratio was low. The genetic compositions of carcass and spraint genotypes were very similar according to confidence intervals of theta and two methods for assigning composite genotypes to groups. A distinct group of approximately 11 carcass and spraint genotypes was detected using the latter methods. The results suggest that spraints can yield unbiased estimates of population genetic composition and sex ratio.
Temporary streams are dynamic ecosystems in which mosaics of flowing, ponded and dry habitats support high biodiversity of both aquatic and terrestrial species. Species interact within habitats to perform or facilitate processes that vary in response to changing habitat availability. A natural capital approach recognizes that, through such processes, the ‘natural assets’ of all ecosystems deliver services that benefit people. The ecosystem services of temporary streams remain largely unexplored, in particular those provided during ponded and dry phases. In addition, recent characterizations have focused on dryland systems, and it remains unclear how service provision varies among different climatic regions, or between developed and developing economies. We use evidence from interdisciplinary literature to examine the ecosystem services delivered by temporary streams, including the regulating, provisioning and cultural services provided across the continuum from flowing to dry conditions. We focus on service provision during dry phases and wet–dry transitions, across regions with contrasting climates and economic development. Provision of individual services in temporary streams may be reduced, enhanced or changed by surface water loss. Services enhanced by dry phases include provision of higher‐quality subsurface drinking water and unique opportunities for recreation. Shifts between dry and wet phases enable groundwater recharge that mitigates water scarcity, and grant dry‐phase access to sediments deposited during flowing phases. However, the accessibility and thus perceived value of these and other services varies considerably among regions. In addition, accessing provisioning services requires careful management to promote sustainable resource use and avoid ecological degradation. We highlight the need for environmental managers to recognize temporary streams as aquatic–terrestrial ecosystems, and to take actions promoting their diversity within functional socio‐ecological systems that deliver unique service bundles characterized by variability and differing availability in space and time. A free Plain Language Summary can be found within the Supporting Information of this article.
Temporary streams are dynamic ecosystems that shift between wet and dry states and include the ‘winterbourne’ chalk streams of south England. Our understanding of temporary stream biodiversity is biased, with most research to date exploring aquatic invertebrate communities in benthic sediments during flowing phases. We surveyed the invertebrate communities of the Candover Brook chalk stream, comparing aquatic (benthic, hyporheic) and terrestrial communities in reaches with different flow permanence regimes. We used kick and Bou–Rouch sampling methods to collect aquatic invertebrates, and compared the terrestrial communities characterised by pitfall traps and ground searches and in different seasons. Although aquatic taxa richness was lower in temporary compared to perennial reaches, the total biodiversity of temporary stream channels was enhanced by contributions from both aquatic and terrestrial species, including several of conservation interest. We recommend that both aquatic and terrestrial communities should be considered in research and monitoring to characterise the biodiversity and ecological quality of temporary streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.