BackgroundAntimicrobial self-medication is common in most low and middle income countries (LMICs). However there has been no systematic review on non-prescription antimicrobial use in these settings. This review thus intended to establish the burden, risk factors and effects of antimicrobial self-medication in Low and Middle Income Countries.MethodsIn 2012, we registered a systematic review protocol in PROSPERO (CRD42012002508). We searched PubMed, Medline, Scopus, and Embase databases using the following terms; “self-medication”, “non-prescription”, ‘self-treatment’, “antimicrobial”, “antimalarial”, “antibiotic”, “antibacterial” “2002-2012” and combining them using Boolean operators. We performed independent and duplicate screening and abstraction of study administrative data, prevalence, determinants, type of antimicrobial agent, source, disease conditions, inappropriate use, drug adverse events and clinical outcomes of antibiotic self-medication where possible. We performed a Random Effects Meta-analysis.ResultsA total of thirty four (34) studies involving 31,340 participants were included in the review. The overall prevalence of antimicrobial self-medication was 38.8 % (95 % CI: 29.5-48.1). Most studies assessed non-prescription use of antibacterial (17/34: 50 %) and antimalarial (5/34: 14.7 %) agents. The common disease symptoms managed were, respiratory (50 %), fever (47 %) and gastrointestinal (45 %). The major sources of antimicrobials included, pharmacies (65.5 %), leftover drugs (50 %) and drug shops (37.5 %). Twelve (12) studies reported inappropriate drug use; not completing dose (6/12) and sharing of medicines (4/12). The main determinants of antimicrobial self-medication include, level of education, age, gender, past successful use, severity of illness and income. Reported negative outcomes of antimicrobial self-medication included, allergies (2/34: 5.9 %), lack of cure (4/34: 11.8 %) and causing death (2/34: 5.9 %). The commonly reported positive outcome was recovery from illness (4/34: 11.8 %).ConclusionThe prevalence of antimicrobial self-medication is high and varies in different communities as well as by social determinants of health and is frequently associated with inappropriate drug use.Electronic supplementary materialThe online version of this article (doi:10.1186/s12889-015-2109-3) contains supplementary material, which is available to authorized users.
Self-medication with antimicrobial agents is a common form of self-care among patients globally with the prevalence and nature differing from country to country. Here we assessed the prevalence and predictors of antimicrobial self-medication in post-conflict northern Uganda. A cross-sectional study was carried out using structured interviews on 892 adult (≥18 years) participants. Information on drug name, prescriber, source, cost, quantity of drug obtained, and drug use was collected. Households were randomly selected using multistage cluster sampling method. One respondent who reported having an illness within three months in each household was recruited. In each household, information was obtained from only one adult individual. Data was analyzed using STATA at 95% level of significance. The study found that a high proportion (75.7%) of the respondents practiced antimicrobial self-medication. Fever, headache, lack of appetite and body weakness were the disease symptoms most treated through self-medication (30.3%). The commonly self-medicated antimicrobials were coartem (27.3%), amoxicillin (21.7%), metronidazole (12.3%), and cotrimoxazole (11.6%). Drug use among respondents was mainly initiated by self-prescription (46.5%) and drug shop attendants (57.6%). On average, participants obtained 13.9±8.8 (95%CI: 12.6–13.8) tablets/capsules of antimicrobial drugs from drug shops and drugs were used for an average of 3.7±2.8 days (95%CI: 3.3–3.5). Over half (68.2%) of the respondents would recommend self-medication to another sick person. A high proportion (76%) of respondents reported that antimicrobial self-medication had associated risks such as wastage of money (42.1%), drug resistance (33.2%), and masking symptoms of underlying disease (15.5%). Predictors of self-medication with antimicrobial agents included gender, drug knowledge, drug leaflets, advice from friends, previous experience, long waiting time, and distance to the health facility. Despite knowledge of associated risks, use of self-medication with antimicrobial drugs in management of disease symptoms is a common practice in post-conflict northern Uganda.
The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.
BackgroundSurgical site infections (SSIs) are difficult to treat and are associated with substantially longer hospital stay, higher treatment cost, morbidity and mortality, particularly when the etiological agent is multidrug-resistant (MDR). To address the limited data in Uganda on SSIs, we present the spectrum of bacteria isolated from hospitalized patients, the magnitude and impact of MDR bacterial isolates among patients with SSIs.MethodsA descriptive cross sectional study was conducted from September 2011 through April 2012 involving 314 patients with SSIs in the obstetrics & gynecology, general surgery and orthopedic wards at Mulago National Hospital in Kampala, Uganda. Wound swabs were taken and processed using standard microbiological methods. Clinico-demographic characteristics of patients were obtained using structured questionnaires and patients’ files.ResultsOf the 314 enrolled patients with SSIs (mean age 29.7 ±13.14 years), 239 (76.1%) were female. More than half of the patients were from obstetrics and gynecology (62.1%, 195/314). Of 314 wound swabs taken, 68.8% (216/314) were culture positive aerobically, yielding 304 bacterial isolates; of which 23.7% (72/304) were Escherichia coli and 21.1% (64/304) were Staphylococcus aureus. More than three quarters of Enterobacteriaceae were found to be extended spectrum beta lactamase (ESBL) producers and 37.5% of S. aureus were Methicillin resistant S. aureus (MRSA). MDR occurred in 78.3% (238/304) of the isolates; these were more among Gram-negative bacteria (78.6%, 187/238) compared to Gram-positive bacteria (21.4%, 51/238), (p-value < 0.0001, χ2 = 49.219). Amikacin and imepenem for ESBL-producing Enterobacteriacea and vancomycin for MRSA showed excellent performance except that they remain expensive drugs in Uganda.ConclusionMost SSIs at Mulago National Hospital are due to MDR bacteria. Isolation of MRSA and ESBL-producing Enterobacteriaceae in higher proportions than previously reported calls for laboratory guided SSIs- therapy and strengthening of infection control surveillance in this setting.
BackgroundOne of the challenges facing the tuberculosis (TB) control programmes in resource-limited settings is lack of rapid techniques for detection of drug resistant TB, particularly multi drug resistant tuberculosis (MDR TB). Results obtained with the conventional indirect susceptibility testing methods come too late to influence a timely decision on patient management. More rapid tests directly applied on sputum samples are needed. This study compared the sensitivity, specificity and time to results of four direct drug susceptibility testing tests with the conventional indirect testing for detection of resistance to rifampicin and isoniazid in M. tuberculosis. The four direct tests included two in-house phenotypic assays – Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS), and two commercially available tests – Genotype® MTBDR and Genotype® MTBDRplus (Hain Life Sciences, Nehren, Germany).MethodsA literature review and meta-analysis of study reports was performed. The Meta-Disc software was used to analyse the reports and tests for sensitivity, specificity, and area under the summary receiver operating characteristic (sROC) curves. Heterogeneity in accuracy estimates was tested with the Spearman correlation coefficient and Chi-square.ResultsEighteen direct DST reports were analysed: NRA – 4, MODS- 6, Genotype MTBDR® – 3 and Genotype® MTBDRplus – 5. The pooled sensitivity and specificity for detection of resistance to rifampicin were 99% and 100% with NRA, 96% and 96% with MODS, 99% and 98% with Genotype® MTBDR, and 99% and 99% with the new Genotype® MTBDRplus, respectively. For isoniazid it was 94% and 100% for NRA, 92% and 96% for MODS, 71% and 100% for Genotype® MTBDR, and 96% and 100% with the Genotype® MTBDRplus, respectively. The area under the summary receiver operating characteristic (sROC) curves was in ranges of 0.98 to 1.00 for all the four tests. Molecular tests were completed in 1 – 2 days and also the phenotypic assays were much more rapid than conventional testing.ConclusionDirect testing of rifampicin and isoniazid resistance in M. tuberculosis was found to be highly sensitive and specific, and allows prompt detection of MDR TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.