SUMMARYLipoarabinomannan (LAM) is a major structural carbohydrate antigen of the outer surface of Mycobacterium tuberculosis . High antibody titres against LAM are often seen in active tuberculosis (TB). The role of such LAM-specific antibodies in the immune response against TB is unknown. Here we have investigated a monoclonal antibody (MoAb) SMITB14 of IgG1 subclass and its corresponding F(ab ¢ ) 2 fragment directed against LAM from M. tuberculosis strain H37Rv. MoAb SMITB14 was shown by immunofluorescence to bind to whole cells of the clinical isolate M. tuberculosis strain Harlingen as well as to M. tuberculosis H37Rv. The binding of MoAb SMITB14 to LAM was inhibited by arabinomannan (AM) and oligosaccharides (5·2 kDa) derived from LAM, showing that the MoAb binds specifically to the AM carbohydrate portion of LAM. In passive protection experiments BALB/c mice were infected intravenously with M. tuberculosis Harlingen. MoAb SMITB14 was added intravenously either prior to, or together with, the bacteria. The antibody proved to be protective against the M. tuberculosis infection in terms of a dose-dependent reduction in bacterial load in spleens and lungs, reduced weight loss and, most importantly, increased long-term survival.
BackgroundOne of the challenges facing the tuberculosis (TB) control programmes in resource-limited settings is lack of rapid techniques for detection of drug resistant TB, particularly multi drug resistant tuberculosis (MDR TB). Results obtained with the conventional indirect susceptibility testing methods come too late to influence a timely decision on patient management. More rapid tests directly applied on sputum samples are needed. This study compared the sensitivity, specificity and time to results of four direct drug susceptibility testing tests with the conventional indirect testing for detection of resistance to rifampicin and isoniazid in M. tuberculosis. The four direct tests included two in-house phenotypic assays – Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS), and two commercially available tests – Genotype® MTBDR and Genotype® MTBDRplus (Hain Life Sciences, Nehren, Germany).MethodsA literature review and meta-analysis of study reports was performed. The Meta-Disc software was used to analyse the reports and tests for sensitivity, specificity, and area under the summary receiver operating characteristic (sROC) curves. Heterogeneity in accuracy estimates was tested with the Spearman correlation coefficient and Chi-square.ResultsEighteen direct DST reports were analysed: NRA – 4, MODS- 6, Genotype MTBDR® – 3 and Genotype® MTBDRplus – 5. The pooled sensitivity and specificity for detection of resistance to rifampicin were 99% and 100% with NRA, 96% and 96% with MODS, 99% and 98% with Genotype® MTBDR, and 99% and 99% with the new Genotype® MTBDRplus, respectively. For isoniazid it was 94% and 100% for NRA, 92% and 96% for MODS, 71% and 100% for Genotype® MTBDR, and 96% and 100% with the Genotype® MTBDRplus, respectively. The area under the summary receiver operating characteristic (sROC) curves was in ranges of 0.98 to 1.00 for all the four tests. Molecular tests were completed in 1 – 2 days and also the phenotypic assays were much more rapid than conventional testing.ConclusionDirect testing of rifampicin and isoniazid resistance in M. tuberculosis was found to be highly sensitive and specific, and allows prompt detection of MDR TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.