Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that resist natural degradation and bioaccumulate in nature. Combined with their toxicity, this leads them to cause cancer and other health hazards. Thus, there is a vital need for rapid and sensitive methods to detect PCB residues in food and in the environment. In this study, PCB-binding DNA aptamers were developed using PCB72 and PCB106 as targets for aptamer selection. Aptamers are synthetic DNA recognition elements which form unique conformations that enable them to bind specifically to their targets. Using in vitro selection techniques and fluorometry, an aptamer that binds with nanomolar affinity to both the PCBs has been developed. It displayed high selectivity to the original target congeners and limited affinity toward other PCB congeners (105, 118, 153, and 169), suggesting general specificity for the basic PCB skeleton with varying affinities for different congeners. This aptamer provides a basis for constructing an affordable, sensitive, and high-throughput assay for the detection of PCBs in food and environmental samples and offers a promising alternative to existing methods of PCB quantitation. This study therefore advances aptamer technology by targeting one of the highly sought-after POPs, for the first time ever recorded.
A novel, label-free folding induced aptamerbased electrochemical biosensor for the detection of chloramphenicol (CAP) in the presence of its analogues has been developed. CAP is a broad-spectrum antibiotic that has lost its favor due to its serious adverse toxic effects on human health. Aptamers are artificial nucleic acid ligands (ssDNA or RNA) able to specifically recognize a target such as CAP. In this article, the aptamers are fixed onto a gold electrode surface by a self-assembly approach. In the presence of CAP, the unfolded ssDNA on the electrode surface changes to a hairpin structure, bringing the target molecules close to the surface and triggering electron transfer. Detection limits were determined to be 1.6 × 10 −9 mol L −1 . In addition, thiamphenicol (TAP) and florfenicol (FF), antibiotics with a structure similar to CAP, did not influence the performance of the aptasensor, suggesting a good selectivity of the CAP-aptasensor. Its simplicity and low detection limit (because of the home-selected aptamers) suggest that the electrochemical aptasensor is suitable for practical use in the detection of CAP in milk samples.
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.