Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-
Magnesium transporters (MGTs) play a prominent role in the absorption, transportation, and storage of magnesium in plant cells. In the present study, MGT gene family members were identified and characterized into two species of Cucurbitaceae, including Cucumis sativus and Citrullus lanatus. Totals of 20 and 19 MGT genes were recognized in Citrullus lanatus and Cucumis sativus, respectively. According to their physicochemical properties, the members of each sub-class of MGTs in the species of Cucurbitaceae showed the close relationship. Proteins from NIPA class were identified as hydrophilic proteins with high stability. Based on phylogenetic analysis, MGT family members were classified into three groups, and NIPAs showed more diversity. Moreover, duplication events were not identified between the MGT genes in C. lanatus and C. sativus. According to pocket analysis, residues such as L, V, S, I, and A were frequently observed in the binding sites of MGT proteins in both studied species. The prediction of post-translation modifications revealed that MSR2 proteins have higher phosphorylation potentials than other sub-classes of MGT in both studied plants. The expression profile of MGTs showed that MGTs are more expressed in root tissues. In addition, MGTs showed differential expression in response to abiotic/biotic stresses as well as hormone application and NIPAs were more induced in response to stimuli in watermelon. The results of this study, as the primary work of MGT gene family, can be used in programs related to Cucurbitaceae breeding.
Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist’s mind, as it allows genome editing in multiple biological systems.
Water scarcity is a major challenge to wheat productivity under changing climate conditions, especially in arid and semi-arid regions. During recent years, different agronomic, physiological and molecular approaches have been used to overcome the problems related to drought stress. Breeding approaches, including conventional and modern breeding, are among the most efficient options to overcome drought stress through the development of new varieties adapted to drought. Growing drought-tolerant wheat genotypes may be a sustainable option to boost wheat productivity under drought stress conditions. Therefore, the present study was conducted with the aim to screen different wheat genotypes based on stress tolerance levels. For this purpose, eleven commonly cultivated wheat genotypes (V1 = Akbar-2019, V2 = Ghazi-2019, V3 = Ujala-2016, V4 = Zincol-2016, V5 = Anaj-2017, V6 = Galaxy-2013, V7 = Pakistan-2013, V8 = Seher-2006, V9 = Lasani-2008, V10 = Faisalabad-2008 and V11 = Millat-2011) were grown in pots filled with soil under well-watered (WW, 70% of field capacity) and water stress (WS, 35% of field capacity) conditions. Treatments were arranged under a completely randomized design (CRD) with three replicates. Data on yield and yield-related traits (tillers/plant, spikelets/spike, grains/spike, 100 grain weight, seed and biological yield) and physio-biochemical (chlorophyll contents, relative water content, membrane stability index, leaf nitrogen, phosphorus, and potassium content) attributes were recorded in this experiment. Our results showed that drought stress significantly affected the morpho-physiological, and biochemical attributes in all tested wheat varieties. Among the genotypes, all traits were found to be significantly (p < 0.05) higher in wheat genotype Faisalabad-2008, including biological yield (9.50 g plant−1) and seed yield (3.39 g plant−1), which was also proven to be more drought tolerant than the other tested genotypes. The higher biological and grain yield of genotype Faisalabad-2008 was mainly attributed to greater numbers of tillers/plant and spikelets/spike compared to the other tested genotypes. The wheat genotype Galaxy-2013 had significantly lower biological (7.43 g plant−1) and seed yield (2.11 g plant−1) than all other tested genotypes, and was classified as a drought-sensitive genotype. For the genotypes, under drought stress, biological and grain yield decreased in the order V10 > V2 > V1 > V4 > V7 > V11 > V9 > V8 > V3 > V6. These results suggest that screening for drought-tolerant genotypes may be a more viable option to minimize drought-induced effects on wheat in drought-prone regions.
The TIFY gene family, a key plant-specific transcription factor (TF) family, is involved in diverse biological processes including plant defense and growth regulation. Despite TIFY proteins being reported in some plant species, a genome-wide comparative and comprehensive analysis of TIFY genes in plant species can reveal more details. In the current study, the members of the TIFY gene family were significantly increased by the identification of 18 and six new members using maize and tomato reference genomes, respectively. Thus, a genome-wide comparative analysis of the TIFY gene family between 48 tomato (Solanum lycopersicum, a dicot plant) genes and 26 maize (Zea mays, a monocot plant) genes was performed in terms of sequence structure, phylogenetics, expression, regulatory systems, and protein interaction. The identified TIFYs were clustered into four subfamilies, namely, TIFY-S, JAZ, ZML, and PPD. The PPD subfamily was only detected in tomato. Within the context of the biological process, TIFY family genes in both studied plant species are predicted to be involved in various important processes, such as reproduction, metabolic processes, responses to stresses, and cell signaling. The Ka/Ks ratios of the duplicated paralogous gene pairs indicate that all of the duplicated pairs in the TIFY gene family of tomato have been influenced by an intense purifying selection, whereas in the maize genome, there are three duplicated blocks containing Ka/Ks > 1, which are implicated in evolution with positive selection. The amino acid residues present in the active site pocket of TIFY proteins partially differ in each subfamily, although the Mg or Ca ions exist heterogeneously in the centers of the active sites of all the predicted TIFY protein models. Based on the expression profiles of TIFY genes in both plant species, JAZ subfamily proteins are more associated with the response to abiotic and biotic stresses than other subfamilies. In conclusion, globally scrutinizing and comparing the maize and tomato TIFY genes showed that TIFY genes play a critical role in cell reproduction, plant growth, and responses to stress conditions, and the conserved regulatory mechanisms may control their expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.