This work presents a construction of stationary Markov models with negative-binomial marginal distributions. A simple closed form expression for the corresponding transition probabilities is given, linking the proposal to well-known classes of birth and death processes and thus revealing interesting characterizations. The advantage of having such closed form expressions is tested on simulated and real data.
This work links the conditional probability structure of Lancaster probabilities to a construction of reversible continuous-time Markov processes. Such a task is achieved by using the spectral expansion of the corresponding transition probabilities in order to introduce a continuous time dependence in the orthogonal representation inherent to Lancaster probabilities. This relationship provides a novel methodology to build continuous-time Markov processes via Lancaster probabilities. Particular cases of well-known models are seen to fall within this approach. As a byproduct, it also unveils new identities associated to well known orthogonal polynomials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.