Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness, and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops, and trees under controlled and natural conditions. Tomato is one of the world’s most important vegetable crops; however, little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum, and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over 2 consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi, and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa, and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner. Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves.Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype, and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.
Our results indicate that atorvastatin, independently of its cholesterol-lowering capacity, lowers the ACE/ACE2 ratio to normal values and attenuates the development of adverse remodeling in the diabetic heart.
Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops and trees under controlled and natural conditions. Tomato is one of the world’s most important vegetable crops, however little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over two consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves. Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.
Objetivos. Evaluar el efecto de atorvastatina sobre la progresión del remodelado cardiaco y la expresión de ECA-2 en el miocardio de ratas diabéticas. Materiales y métodos. La diabetes fue inducida en ratas Holtzman con una inyección intraperitoneal de estreptozotocina. Los animales fueron divididos en tres grupos: (1) ratas control, (2) ratas diabéticas y (3) ratas diabéticas tratadas con atorvastatina (50 mg/kg/día). Después de ocho semanas de tratamiento, los corazones fueron extraídos para el análisis morfométrico, la cuantificación de colágeno y la determinación de los niveles de ARNm de ECA y ECA-2. Resultados. El índice de hipertrofia ventricular y el depósito de colágeno se incrementaron significativamente en las ratas diabéticas. La administración de atorvastatina previno estos cambios sin modificar los niveles de colesterol. La hiperglicemia produjo un incremento significativo en los niveles del ARNm de ECA y una marcada disminución en la expresión de ECA-2 en el miocardio de ratas diabéticas. La administración de atorvastatina indujo la expresión del ARNm de ECA-2 e inhibió la sobreexpresión del ARNm de ECA en el miocardio de las ratas diabéticas. Conclusiones. Nuestros resultados indican que la atorvastatina, independientemente de su capacidad para disminuir el colesterol, normaliza la relación de la expresión de ECA/ECA-2 y atenúa el desarrollo del remodelado adverso en el corazón diabético.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.