Kinetic and Statistical Thermodynamical Package (KiSThelP) is a cross-platform free open-source program developed to estimate molecular and reaction properties from electronic structure data. To date, three computational chemistry software formats are supported (Gaussian, GAMESS, and NWChem). Some key features are: gas-phase molecular thermodynamic properties (offering hindered rotor treatment), thermal equilibrium constants, transition state theory rate coefficients (transition state theory (TST), variational transition state theory (VTST)) including one-dimensional (1D) tunnelling effects (Wigner, and Eckart) and Rice-Ramsperger-Kassel-Marcus (RRKM) rate constants, for elementary reactions with welldefined barriers. KiSThelP is intended as a working tool both for the general public and also for more expert users. It provides graphical front-end capabilities designed to facilitate calculations and interpreting results. KiSThelP enables to change input data and simulation parameters directly through the graphical user interface and to visually probe how it affects results. Users can access results in the form of graphs and tables. The graphical tool offers customizing of 2D plots, exporting images and data files. These features make this program also well-suited to support and enhance students learning and can serve as a very attractive courseware, taking the teaching content directly from results in molecular and kinetic modelling.
The mechanism of the reaction of OH with acetone has been studied by quantum chemical computations. 21 stationary points (among them reactant complexes, reaction transition states, intermediate complexes and product complexes) have been characterised on the potential energy surface of the reaction. The MP2 method with 6-31G(d,p) basis set was employed for geometry optimisation. Electronic energies were obtained at the CCSD(T)/6-311G(d,p) level of theory. Hydrogen abstraction was found to occur through two complex mechanisms; no transition state for direct abstraction could be located. Minimum energy path analyses have revealed two distinct pathways which lead to CH 3 (+CH 3 COOH) formation. One of them sets out the abstraction channel and proceeds via intermolecular complexes and the other one involves addition of OH to the carbonyl double bond and subsequent decomposition of the adduct hydroxy-alkoxy radical. The rate limiting steps involve large energy barriers and, consequently, these pathways do not explain the high methyl yields observed experimentally at and below room temperature. Characteristic for the reaction of OH with acetone is the existence of numerous hydrogen-bridged complexes on the potential energy surface that are stabilised by as much as 3.2-26.6 kJ mol À1 binding energy. Some properties of these complexes and their possible role in the molecular mechanism of the reaction are discussed.y Electronic supplementary information (ESI) available: Harmonic vibrational frequences and MP2 structural parameters for intermolecular complexes, reactants, transition states and reaction products. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.