Cancer chemotherapy can induce tumor regression followed, in many cases, by relapse in the long-term. Thus this study was performed to assess the determinants of such phenomenon using an in vivo cancer model and in vitro approaches. When animals bearing an established tumor are treated by cisplatin, the tumor initially undergoes a dramatic shrinkage and is characterized by giant tumor cells that do not proliferate but maintain DNA synthesis. After several weeks of latency, the tumor resumes its progression and consists of small proliferating cells. Similarly, when tumor cells are exposed in vitro to pharmacological concentrations of cisplatin, mitotic activity stops initially but cells maintain DNA duplication. This DNA endoreduplication generates giant polyploid cells that then initiate abortive mitoses and can die through mitotic catastrophe. However, many polyploid cells survive for weeks as non-proliferating mono- or multi-nucleated giant cells which acquire a senescence phenotype. Prolonged observation of these cells sheds light on the delayed emergence of a limited number of extensive colonies which originate from polyploid cells, as demonstrated by cell sorting analysis. Theses colonies are made of small diploid cells which differ from parental cells by stereotyped chromosomal aberrations and an increased resistance to cytotoxic drugs. These data suggest that a multistep pathway, including DNA endoreduplication, polyploidy, then depolyploidization and generation of clonogenic escape cells can account for tumor relapse after initial efficient chemotherapy.
We study the early stages of flocculation in suspensions of charged colloidal particles in the presence of oppositely charged polyelectrolytes. Absolute aggregation rate constants are determined by time-resolved static and dynamic light scattering. The aggregation rates of amidine and sulfate polystyrene latex particles are measured in the presence of various polyelectrolytes as a function of the polymer dose and ionic strength. The suspension stability sensitively depends on both parameters and is mainly controlled by electrostatic forces. The polymer dose determines the overall particle charge, as revealed by electrophoretic mobility measurements. Near the isoelectric point, one observes fast aggregation, while slow aggregation dominates farther away from this point. The ionic strength strongly influences the suspension stability through screening of electrostatic interactions. With increasing ionic strength, the width of the fast aggregation regime increases, and in the slow regime the sensitivity of the rate constant on the polymer dose decreases. In the fast regime, the decrease of the ionic strength leads to a substantial enhancement of the aggregation rate constant. This effect is characteristic for charge patch flocculation and results from the presence of surface charge heterogeneities.
Treatment of metastatic cancer mainly relies on chemotherapy. Chemotherapeutic agents kill tumor cells by direct cytotoxicity, thus leading to tumor regression. However, emerging data focus on another side of cancer chemotherapy: its antitumor immunity effect. Although cancer chemotherapy was usually considered as immunosuppressive, some chemotherapeutic agents have recently been shown to activate an anticancer immune response, which is involved in the curative effect of these treatments. Cancer development often leads to the occurrence of an immune tolerance that prevents cancer rejection by the immune system and hinders efficacy of immunotherapy. Cancer cells induce proliferation and local accumulation of immunosuppressive cells such as regulatory T cells and immature myeloid cells, and prevent the maturation of dendritic cells and their capacity to present tumor antigens to T lymphocytes. Many anticancer cytotoxic agents interfere with the molecular and cellular mechanisms leading to tumor-induced tolerance. They can restore an efficient immune response that contributes to the therapeutic effects of chemotherapy. These findings open a novel field of investigations for future clinical trial design, taking into account the immunostimulatory capacity of chemotherapeutic agents, and using them in combined chemo-immunotherapy strategies when tumor-induced tolerance is overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.