The framework of the uncontrolled manifold hypothesis (UCM hypothesis) was applied to the analysis of the structure of finger force variability during oscillatory force production tasks. Subjects produced cycles of force with one, two (index and middle), or three (index, middle, and ring) fingers acting in parallel against force sensors mounted inside a small frame. The frame could be placed on the top of a table (stable conditions) or on a 4-mm-wide supporting surface (unstable conditions). Subjects were less variable when they used two fingers than when using one finger; adding the third finger did not change indices of variability of the performance. Components of finger force variance that did (VUN) or did not (VCOMP) change the value of a particular functional variable were computed for two control hypotheses: (1) at each time, the subjects tried to stabilize the total value of force (force-control); and (2), at each time, the subjects tried to stabilize the total moment produced with respect to an axis parallel to the hand/forearm (moment-control). Most subjects showed selective stabilization of moment and destabilization of force throughout most of the force cycle, in both stable and unstable conditions. The shapes of VUN and VCOMP suggested a possibility of selective compensation of timing errors across fingers within force cycles. One subject showed different relations between VUN and VCOMP, suggesting that these relations did in fact reflect particular central strategies of solving the tasks. The UCM method is applicable to force production tasks. It allows the comparison of control hypotheses in a quantitative way and unveils central strategies of control of redundant motor systems. Within this approach, redundancy (rather, abundance) is not a problem but an inherent part of a solution for natural motor tasks.
Most common motor acts involve highly redundant effector systems. Understanding how such systems are controlled by the nervous system is a long-standing scientific challenge. Most proposals for solving this problem are based on the assumption that a particular solution, which optimizes additional constraints, is selected by the nervous system out of the many possible solutions. This study attempts to address this question in the context of coordinating individual finger forces to produce a controlled total force oscillation between 5% and 35% of each subject's maximum force of voluntary contraction, under two different combinations of four fingers. The structure of variability of individual finger forces was evaluated with respect to hypotheses that, at each instance in time, subjects attempt to: (1) stabilize the value of total force and (2) stabilize the total moment created by the fingers about the long axis passing through the forearm and midline of the hand. The results provide evidence that a range of goal-equivalent finger force combinations is generated to stabilize the values of total force and the total moment. The control of total force was specified explicitly by the task. However, it was stabilized only near the time of peak force. In contrast, the total moment was stabilized throughout most of the force cycle. The results lead to the suggestion that successful task performance is achieved, not by selecting a single optimal solution, but by discovering an appropriate control law that selectively stabilizes certain combinations of degrees of freedom relevant to the task while releasing from control other combinations.
Finger forces are known to change involuntarily during multi-finger force-production tasks, even when a finger's involvement in a task is not consciously changed (the enslaving effect). Furthermore, during maximal force-production (MVC) tests, the force produced by a given finger in a multi-finger task is smaller than the force generated by this finger in its single-finger MVC test (the force-deficit effect). A set of hypothetical control variables - modes - is introduced. Modes can be estimated based on individual finger forces during single-finger MVC tests. We show that a simple formal model based on modes with only one free parameter accounts for finger forces during a variety of multi-finger MVC tests. The free parameter accounts for the force-deficit effect, and its value depends only on the number of explicitly involved fingers. This approach offers a simple framework for the analysis of finger interaction during multi-finger actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.