Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
We present a new minimum description length (MDL) approach based on a deformable partition--a polygonal grid--for automatic segmentation of a speckled image composed of several homogeneous regions. The image segmentation thus consists in the estimation of the polygonal grid, or, more precisely, its number of regions, its number of nodes and the location of its nodes. These estimations are performed by minimizing a unique MDL criterion which takes into account the probabilistic properties of speckle fluctuations and a measure of the stochastic complexity of the polygonal grid. This approach then leads to a global MDL criterion without an undetermined parameter since no other regularization term than the stochastic complexity of the polygonal grid is necessary and noise parameters can be estimated with maximum likelihood-like approaches. The performance of this technique is illustrated on synthetic and real synthetic aperture radar images of agricultural regions and the influence of different terms of the model is analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.