We extend existing oceanographic sampling methodologies to sample an advecting feature of interest using autonomous robotic platforms. GPS-tracked Lagrangian drifters are used to tag and track a water patch of interest with position updates provided periodically to an autonomous underwater vehicle (AUV) for surveys around the drifter as it moves with ocean currents. Autonomous sampling methods currently rely on geographic waypoint track-line surveys that are suitable for static or slowly changing features. When studying dynamic, rapidly evolving oceanographic features, such methods at best introduce error through insufficient spatial and temporal resolution, and at worst, completely miss the spatial and temporal domain of interest. We demonstrate two approaches for tracking and sampling of advecting oceanographic features. The first relies on extending static-plan AUV surveys (the current state-of-the-art) to sample advecting features. The second approach involves planning of surveys in the drifter or patch frame of reference. We derive a quantitative envelope on patch speeds that can be tracked autonomously by AUVs and drifters and show results from a multi-day offshore field trial. The results from the trial demonstrate the applicability of our approach to long-term tracking and sampling of advecting features. Additionally, we analyze the data from the trial to identify the sources of error that affect the quality of the surveys carried out. Our work presents the first set of experiments to autonomously observe advecting oceanographic features in the open ocean.
Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect ''closing the loop'' on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to specify the mission at a relatively high level.
Abstract-Obtaining synoptic observations of dynamic ocean phenomena such as fronts, eddies, oxygen minimum zones and blooms has been challenging primarily due to the large spatial scales involved. Traditional methods of observation with manned ships are expensive and, unless the vessel can survey at high-speed, unrealistic. Autonomous underwater vehicles (AUVs) are robotic platforms that have been making steady gains in sampling capabilities and impacting oceanographic observations especially in coastal areas. However, their reach is still limited by operating constraints related to their energy sources. Unmanned aerial vehicles (UAVs) recently introduced in coastal and polar oceanographic experiments have added to the mix in observation strategy and methods. They offer a tantalizing opportunity to bridge such scales in operational oceanography by coordinating with AUVs in the water-column to get in-situ measurements. In this paper, we articulate the principal challenges in operating UAVs with AUVs making synoptic observations for such targeted watercolumn sampling. We do so in the context of autonomous control and operation for networked robotics and describe novel experiments while articulating the key challenges and lessons learned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.