Abstract-Obtaining synoptic observations of dynamic ocean phenomena such as fronts, eddies, oxygen minimum zones and blooms has been challenging primarily due to the large spatial scales involved. Traditional methods of observation with manned ships are expensive and, unless the vessel can survey at high-speed, unrealistic. Autonomous underwater vehicles (AUVs) are robotic platforms that have been making steady gains in sampling capabilities and impacting oceanographic observations especially in coastal areas. However, their reach is still limited by operating constraints related to their energy sources. Unmanned aerial vehicles (UAVs) recently introduced in coastal and polar oceanographic experiments have added to the mix in observation strategy and methods. They offer a tantalizing opportunity to bridge such scales in operational oceanography by coordinating with AUVs in the water-column to get in-situ measurements. In this paper, we articulate the principal challenges in operating UAVs with AUVs making synoptic observations for such targeted watercolumn sampling. We do so in the context of autonomous control and operation for networked robotics and describe novel experiments while articulating the key challenges and lessons learned.
Aerial robots are a promising platform to perform autonomous inspection of infrastructures. For this application, the world is a large and unknown space, requiring light data structures to store its representation while performing autonomous exploration and path planning for obstacle avoidance. In this paper, we combine frontier cells based exploration with the Lazy Theta* path planning algorithm over the same light sparse grid-the octree implementation of octomap. Test-driven development has been adopted for the software implementation and the subsequent automated testing process. These tests provided insight into the amount of iterations needed to generate a path with different voxel configurations. The results for synthetic and real datasets are analyzed having as baseline a regular grid with the same resolution as the maximum resolution of the octree. The number of iterations needed to find frontier cells for exploration was smaller in all cases by, at least, one order of magnitude. For the Lazy Theta* algorithm there was a reduction in the number of iterations needed to find the solution in 75% of the cases. These reductions can be explained both by the existent grouping of regions with the same status and by the ability to confine inspection to the known voxels of the octree.
Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator’s fine-scale behaviour observed over a two weeks in May 2014.
Exploring large, unknown, and unstructured environments is challenging for Unmanned Aerial Vehicles (UAVs), but they are valuable tools to inspect large structures safely and efficiently. The Lazy Theta* path-planning algorithm is revisited and adapted to generate paths fast enough to be used in real time and outdoors in large 3D scenarios. In real unknown scenarios, a given minimum safety distance to the nearest obstacle or unknown space should be observed, increasing the associated obstacle detection queries, and creating a bottleneck in the path-planning algorithm. We have reduced the dimension of the problem by considering geometrical properties to speed up these computations. On the other hand, we have also applied a non-regular grid representation of the world to increase the performance of the path-planning algorithm. In particular, a sparse resolution grid in the form of an octree is used, organizing the measurements spatially, merging voxels when they are of the same state. Additionally, the number of neighbors is trimmed to match the sparse tree to reduce the number of obstacle detection queries. The development methodology adopted was Test-Driven Development (TDD) and the outcome was evaluated in real outdoors flights with a multirotor UAV. In the results, the performance shows over 90 percent decrease in overall path generation computation time. Furthermore, our approach scales well with the safety distance increases.
This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.