SummaryAn Arabidopsis thaliana line bearing a transposon insertion in the gene coding for the isozyme form of the plant-specific cap-binding protein, eukaryotic initiation factor (iso) 4E (eIF (iso) 4E), has been isolated. This mutant line completely lacks both eIF(iso)4E mRNA and protein, but was found to have a phenotype and fertility indistinguishable from wild-type plants under standard laboratory conditions. In contrast, the amount of the related eIF4E protein was found to increase in seedling extracts. Furthermore, polysome analysis shows that the mRNA encoding eIF4E was being translated at increased levels. Given the known interaction between cap-binding proteins and potyviral genome-linked proteins (VPg), this plant line was challenged with two potyviruses, Turnip mosaic virus (TuMV) and Lettuce mosaic virus (LMV) and was found resistant to both, but not to the Nepovirus, Tomato black ring virus (TBRV) and the Cucumovirus, Cucumber mosaic virus (CMV). Together with previous data showing that the VPg-eIF4E interaction is necessary for virus infectivity and upregulates genome amplification, this shows that the eIF4E proteins are specifically recruited for the replication cycle of potyviruses.
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.
We have performed a systematic search for recombination in the region encoding coat protein and the 3' non-translated region in natural isolates of potyviruses, the largest group of plant RNA viruses. The presence of recombination, and the localization ofthe cross-over points, were confirmed statistically, by three different methods. Recombination was detected or suspected in 18 out of 109 potyvirus isolates tested, belonging to four out of eight virus species, and was most prevalent in potato virus Y, clear in bean common mosaic virus, and possible in bean yellow mosaic and zucchini yellow mosaic viruses. Recombination was not detected in the four other potyvirus species tested, including plum pox virus, despite the availability of numerous sequences for this last species. Though it was not specifically researched, no evidence for inter-specific recombination was found. For several reasons, including the fact that only a minor portion of the genome was analysed, the above figures certainly represent an underestimate of the extent of recombination among isolates of potyviruses, which might thus be a common phenomenon.
In recent years, researchers have adopted many new technologies to help understand potyvirus pathogenesis. Their findings have illuminated key aspects of the interactions between the host and the virus, and between the virus and its aphid vector. This review focuses on advances in our understanding of the molecular determinants of systemic infection, symptom expression, aphid and seed transmission, and natural and engineered resistance to potyviruses. Very recent developments in the area of post-transcriptional gene silencing indicate not only that the process is fundamental to engineered resistance, but may also underlie many aspects of the biology of plant viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.