The emission trade-off between soot and NOx is an issue of major concern in automotive diesel applications. Measures need to be taken both on the engine and on the aftertreatment sides in order to optimize the engine emissions while maintaining the highest possible efficiency. It is known that post injections have a potential for exhaust soot reduction without any significant influence in the NOx emissions. However, an accurate and general rule of how to parameterize a post injection such that it provides a maximum reduction of soot emissions does not exist. Moreover, the underlying mechanisms are not understood in detail.
The experimental investigation presented here provides insight into the fundamental mechanisms of soot formation and reduction due to post injections under different turbulence and reaction kinetic conditions. In parallel to the measurement of soot elementary carbon in the exhaust (using a Photo Acoustic Soot Sensor), the in-cylinder soot formation and oxidation process have been investigated with an Optical Light Probe (OLP). This sensor provides crank angle resolved information about the in-cylinder soot evolution.
The experiments confirm conclusions of earlier works that soot reduction due to a post injection is mainly based on two reasons: increased turbulence (from the post injection) during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. A third effect of heat addition during the soot oxidation, which was often mentioned in the literature, could not be confirmed. In addition, the experiments show that variations of turbulence (from swirl) and reaction kinetics have a minor influence on the diffusion controlled heat release rate. However, the time phasing of the soot evolution is highly influenced by these variations with only small changes in the peak soot concentration. It is shown that the soot reduction of a post injection depends on the timing. More precisely, the soot reduction capability of a post injection decreases rapidly as soon as its timing is late in the soot oxidation phase. The soot oxidation rate can only be improved by increased turbulence and heat addition from the post injection in a time window before the in-cylinder soot peak occurs. Depending on EGR and swirl level, a maximum dwell time can be defined after which the post injection effect becomes counterproductive with respect to the soot oxidation rate.
Variations of engine-out emissions due to ageing, component drift or production tolerances pose serious problems to meet legislative restrictions on exhaust tailpipe pollutant emissions. This paper addresses feedback of the raw emissions for improved control of diesel engines. A discussion of issues regarding the inclusion of raw-emission feedback into the engine control structure is provided, and a novel control structure for combined feedback control of the air-path variables boost pressure and exhaust gas recirculation rate and of the NO x emissions is presented. The proposed control structure basically consists of an optimal linear output feedback controller and a setpoint-adaption loop on the exhaust gas recirculation rate. With this approach, a simple control structure is available requiring a marginal calibration effort to meet desired NO x -emission values. Unfavourable injection timing in connection with NO x control is minimized by adapting the exhaust gas recirculation rate setpoint. The performance of the proposed approach is demonstrated by experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.