We compare the performances of a wide set of regression techniques and machine learning algorithms for predicting recovery rates on non-performing loans, using a private database from a European debt collection agency. We find that rule-based algorithms such as Cubist, boosted trees and random forests perform significantly better than other approaches. In addition to loan contract specificities, the predictors referring to the bank recovery process-prior to the portfolio's sale to the debt collector-are also proven to strongly enhance forecasting performances. These variables, derived from the time-series of contacts to defaulted clients and clients' reimbursements to the bank, help all algorithms to better identify debtors with different repayment ability and/or commitment, and in general with different recovery potential.
A key driver of Credit Value Adjustment (CVA) is the possible dependency between exposure and counterparty credit risk, known as Wrong-Way Risk (WWR). At this time, addressing WWR in a both sound and tractable way remains challenging: arbitrage-free setups have been proposed by academic research through dynamic models but are computationally intensive and hard to use in practice. Tractable alternatives based on resampling techniques have been proposed by the industry, but they lack mathematical foundations. This probably explains why WWR is not explicitly handled in the Basel III regulatory framework in spite of its acknowledged importance. The purpose of this paper is to propose a new method consisting of an appealing compromise: we start from a stochastic intensity approach and end up with a pricing problem where WWR does not enter the picture explicitly. This result is achieved thanks to a set of changes of measure: the WWR effect is now embedded in the drift of the exposure, and this adjustment can be approximated by a deterministic function without affecting the level of accuracy typically required for CVA figures. The performances of our approach are illustrated through an extensive comparison of Expected Positive Exposure (EPE) profiles and CVA figures produced either by (i) the standard method relying on a full bivariate Monte Carlo framework and (ii) our drift-adjustment approximation. Given the uncertainty inherent to CVA, the proposed method is believed to provide a promising way to handle WWR in a sound and tractable way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.