We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.
Autonomous underwater vehicles (AUVs) are unmanned submersibles that can be pre-programmed to navigate in three dimensions under water. The technological advances required for reliable deployment, mission control, performance, and recovery of AUVs have developed considerably over the past 10 years. Currently, there are several vehicles operating successfully in the offshore industries as well as in the applied and academic oceanographic sciences. This article reviews the application of AUVs to fisheries- and plankton-acoustics research. Specifications of the main AUVs currently in operation are given. Compared to traditional platforms for acoustic instruments, AUVs can sample previously impenetrable environments such as the sea surface, the deep sea, and under-sea ice. Furthermore, AUVs are typically small, quiet, and have the potential to operate at low cost and be unconstrained by the vagaries of weather. Examples of how these traits may be utilized in fisheries-acoustics science are given with reference to previous work in the North Sea and Southern Ocean and to potential future applications. Concurrent advances in multi-beam sonar technology and species identification, using multi-frequency and broadband sonars, will further enhance the utility of AUVs for fisheries acoustics. However, before many of the more prospective applications can be accomplished, advances in power-source technology are required to increase the range of operation. The paper ends by considering developments that may turn AUVs from objects sometimes perceived as science fiction into instruments used routinely to gather scientific facts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.